【題目】如圖所示,AB∥CD,AD∥BC,BE=DF,則圖中全等三角形共有( )對.
A. 2B. 3C. 4D. 1
【答案】B
【解析】
根據(jù)AB∥CD,AD∥BC可得∠ABD=∠CDB,∠ADB=∠CBD,結(jié)合公共邊BD=DB利用ASA可證ABD≌△CDB;由ABD≌△CDB可得AB=CD,∠ABD=∠CDB,結(jié)合BE=DF利用SAS可證△ABE≌△CDF;由ABD≌△CDB,△ABE≌△CDF可得AD=CB,AE=CF,求出BF=DE利用SSS證明△AED≌△CFB,問題得解.
解:①∵AB∥CD,AD∥BC,
∴∠ABD=∠CDB,∠ADB=∠CBD,
∵BD=DB,
∴ABD≌△CDB(ASA);
②∵ABD≌△CDB,
∴AB=CD,∠ABD=∠CDB,
∵BE=DF,
∴△ABE≌△CDF(SAS);
③∵ABD≌△CDB,△ABE≌△CDF,
∴AD=CB,AE=CF,
∵BE=DF,
∴BE+EF=DF+EF,即BF=DE,
∴△AED≌△CFB(SSS);
所以圖中全等三角形共有3對.
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,過點B作射線BB1∥AC.動點D從點A出發(fā)沿射線AC方向以每秒5個單位的速度運動,同時動點E從點C沿射線AC方向以每秒3個單位的速度運動.過點D作DH⊥AB于H,過點E作EF⊥AC交射線BB1于F,G是EF中點,連接DG.設(shè)點D運動的時間為t秒.
(1)當t為何值時,AD=AB,并求出此時DE的長度;
(2)當△DEG與△ACB相似時,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某隧道口的橫截面是拋物線形,已知路寬AB為6米,最高點離地面的距離OC為5米.以最高點O為坐標原點,拋物線的對稱軸為y軸,1米為數(shù)軸的單位長度,建立平面直角坐標系,求:(1)以這一部分拋物線為圖象的函數(shù)解析式,并寫出x的取值范圍;(2)有一輛寬2.8米,高1米的農(nóng)用貨車(貨物最高處與地面AB的距離)能否通過此隧道?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠APB=30°,圓心在PB上的⊙O的半徑為1cm,OP=3cm,若⊙O沿BP方向平移,當⊙O與PA相切時,圓心O平移的距離為_____cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖A在數(shù)軸上對應(yīng)的數(shù)為-2.
(1)點B在點A右邊距離A點4個單位長度,則點B所對應(yīng)的數(shù)是_____.
(2)在(1)的條件下,點A以每秒2個單位長度沿數(shù)軸向左運動,點B以每秒3個單位長度沿數(shù)軸向右運動.現(xiàn)兩點同時運動,當點A運動到-6的點處時,求A、B兩點間的距離.
(3)在(2)的條件下,現(xiàn)A點靜止不動,B點以原速沿數(shù)軸向左運動,經(jīng)過多長時間A、B兩點相距4個單位長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與相交于點,,射線在內(nèi)(如圖1).
(1)若比小25度,求的大;
(2)若射線平分,(如圖2),則(用含的代數(shù)式表示,請直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖都是由7個小立方體搭成的幾何體,從不同方向看幾何體,分別畫出它們的主視圖、左視圖與俯視圖,并在小正方形內(nèi)填上表示該位置的小正方體的個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com