【題目】ABCADE都是等腰直角三角形,且ACAB,ADAE,連接DC,點(diǎn)MP、N分別為DEDC、BC的中點(diǎn).

1)如圖1,當(dāng)點(diǎn)D、E分別在邊ABAC上,線段PMPN的數(shù)量關(guān)系是   ,位置關(guān)系是   

2)把等腰RtADE繞點(diǎn)A旋轉(zhuǎn)到如圖2的位置,連接MN,判斷PMN的形狀,并說明理由;

3)把等腰RtADE繞點(diǎn)A在平面內(nèi)任意旋轉(zhuǎn),AD2,AB6,請(qǐng)直接寫出PMN的面積S的變化范圍   

【答案】1PMPN,PMPN;(2PMN是等腰直角三角形,見解析;(32≤S≤8

【解析】

1)利用三角形的中位線得出PM=CE,PN=BD,進(jìn)而判斷出BD=CE,即可得出結(jié)論,再利用三角形的中位線得出PMCE得出∠DPM=DCA,最后用互余即可得出結(jié)論;

2)先判斷出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BDPN=BD,即可得出PM=PN,同(1)的方法即可得出結(jié)論;
3)先判斷出BD最大時(shí),△PMN的面積最大,而BD最大是AB+AD=14,再判斷出B

最小時(shí),△PMN最小,即可得出結(jié)論.

解:(1)∵點(diǎn)PNBC,CD的中點(diǎn),

PNBDPNBD,

∵點(diǎn)P,MCD,DE的中點(diǎn),

PMCE,PMCE,

ABACADAE,

BDCE

PMPN,

PNBD

∴∠DPN=∠ADC,

PMCE,

∴∠DPM=∠DCA

∵∠BAC90°,

∴∠ADC+ACD90°

∴∠MPN=∠DPM+DPN=∠DCA+ADC90°,

PMPN,

故答案為:PMPN,PMPN;

2PMN是等腰直角三角形.

由旋轉(zhuǎn)知,∠BAD=∠CAE,

ABAC,ADAE,

∴△ABD≌△ACESAS),

∴∠ABD=∠ACE,BDCE,

利用三角形的中位線得,PNBD,PMCE,

PMPN,

∴△PMN是等腰三角形,

同(1)的方法得,PMCE,

∴∠DPM=∠DCE,

同(1)的方法得,PNBD

∴∠PNC=∠DBC,

∵∠DPN=∠DCB+PNC=∠DCB+DBC

∴∠MPN=∠DPM+DPN=∠DCE+DCB+DBC

=∠BCE+DBC=∠ACB+ACE+DBC

=∠ACB+ABD+DBC=∠ACB+ABC,

∵∠BAC90°

∴∠ACB+ABC90°,

∴∠MPN90°

∴△PMN是等腰直角三角形;

3)由(2)知,PMN是等腰直角三角形,PMPNBD,

PM最大時(shí),PMN面積最大,PM最小時(shí),PMN面積最小

∴點(diǎn)DBA的延長線上,PMN的面積最大,

BDAB+AD8,

PM4

S最大PM2×428,

當(dāng)點(diǎn)D在線段AB上時(shí),PMN的面積最小,

BDABAD4

PM2,

S最小PM2×222

2≤S≤8,

故答案為:2≤S≤8

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線ymx24mx+2m+1x軸交于Ax1,0),Bx2,0)兩點(diǎn),與y軸交于點(diǎn)C,且x2x12

1)求拋物線的解析式;

2E是拋物線上一點(diǎn),∠EAB2OCA,求點(diǎn)E的坐標(biāo);

3)設(shè)拋物線的頂點(diǎn)為D,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿拋物線向上運(yùn)動(dòng),連接PD,過點(diǎn)PPQPD,交拋物線的對(duì)稱軸于點(diǎn)Q,以QD為對(duì)角線作矩形PQMD,當(dāng)點(diǎn)P運(yùn)動(dòng)至點(diǎn)(5,t)時(shí),求線段DM掃過的圖形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,拋物線y=-x2+bx+cx軸交于A、B兩點(diǎn),交y軸正半軸于C點(diǎn),D為拋物線的頂點(diǎn),A-1,0),B3,0).

1)求出二次函數(shù)的表達(dá)式.

2)點(diǎn)Px軸上,且∠PCB=∠CBD,求點(diǎn)P的坐標(biāo).

3)在x軸上方拋物線上是否存在一點(diǎn)Q,使得以QC,BO為頂點(diǎn)的四邊形被對(duì)角線分成面積相等的兩部分?如果存在,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,延長AD至點(diǎn)E,使DEAD,連接BD

1)求證:四邊形BCED是平行四邊形;

2)若DADB2cosA,求點(diǎn)B到點(diǎn)E的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線yax2+bx+c的部分圖象如圖所示,直線x1為對(duì)稱軸,以下結(jié)論①a0,②b0,③2a+b0,④3a+c0正確的有(填序號(hào))_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,當(dāng)m,n滿足mnkk為常數(shù),且m0,n0)時(shí),就稱點(diǎn)(m,n)為等積點(diǎn).若直線y=﹣x+bb0)與x軸、y軸分別交于點(diǎn)A和點(diǎn)B,并且該直線上有且只有一個(gè)等積點(diǎn),過點(diǎn)Ay軸平行的直線和過點(diǎn)Bx軸平行的直線交于點(diǎn)C,點(diǎn)E是直線AC上的等積點(diǎn),點(diǎn)F是直線BC上的等積點(diǎn),若△OEF的面積為,則OE=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C,G是⊙O上兩點(diǎn),且,過點(diǎn)C的直線CDBG于點(diǎn)D,交BA的延長線于點(diǎn)E,連接BC,交OD于點(diǎn)F

1)求證:CD是⊙O的切線;

2)若,求證:AE=AO

3)連接 AD,在(2)的條件下,若CD ,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明家的門框上裝有一把防盜門鎖(如圖1),其平面結(jié)構(gòu)圖如圖2所示,鎖身可以看成由兩條等弧,和矩形組成的,的圓心是倒鎖按鈕點(diǎn).已知的弓形高,,.當(dāng)鎖柄繞著點(diǎn)順時(shí)針旋轉(zhuǎn)至位置時(shí),門鎖打開,此時(shí)直線所在的圓相切,且,

1)求所在圓的半徑;

2)求線段的長度.(,結(jié)果精確到

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yx24x+3

1)求該二次函數(shù)圖象的頂點(diǎn)和對(duì)稱軸;

2)在所給坐標(biāo)系中畫出該二次函數(shù)的圖象;

3)根據(jù)圖象直接寫出方程x24x+30的根;

4)根據(jù)圖象寫出當(dāng)y0時(shí),x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案