【題目】網(wǎng)絡購物越來越方便快捷,遠方的朋友通過網(wǎng)購就可以迅速品嘗到茂名的新鮮荔枝,同時也增加了種植戶的收入,種植戶老張去年將全部荔枝按批發(fā)價賣給水果商,收入6萬元,今年的荔枝產(chǎn)量比去年增加2000千克,計劃全部采用互聯(lián)網(wǎng)銷售,網(wǎng)上銷售比去年的批發(fā)價高50%,若按此價格售完,今年的收入將達到10.8萬元.
(1)去年的批發(fā)價和今年網(wǎng)上售價分別是多少?
(2)若今年老張按(1)中的網(wǎng)上售價銷售,則每天的銷量相同,20天恰好可將荔枝售完,經(jīng)調查發(fā)現(xiàn),當網(wǎng)上售價每上升0.1元/千克,每日銷量將減少5千克,將網(wǎng)上售價定為多少,才能使日銷量收入最大?
【答案】
(1)解:設去年的售價為x元,則今年的售價為(1+50%)x元,去年的產(chǎn)量為y千克,則今年的產(chǎn)量為(y+2000)千克,由題意,得
,
解得: .
則今年的售價為(1+50%)x=9元.
答:去年的售價為6元,則今年的售價為9元
(2)解:由題意,得
今年的產(chǎn)量為:10000+2000=12000千克,
則網(wǎng)上日銷售量為:12000÷20=600千克.
設日銷售利潤為W元,網(wǎng)上售價為a元,由題意,得
W=a(600﹣ ),
W=﹣50a2+1050a
W=﹣50(a﹣ )2+ ,
∴a=﹣50<0,
∴a= 時,W最大= .
∴網(wǎng)上售價定為10.5元,才能使日銷量收入最大為 元
【解析】(1)設去年的售價為x元,則今年的售價為(1+50%)x元,去年的產(chǎn)量為y千克,則今年的產(chǎn)量為(y+2000)千克,根據(jù)條件建立方程組求出其解即可;(2)由(1)的結論可以求出今年的產(chǎn)量,就可以求出日銷售量,設日銷售利潤為W元,網(wǎng)上售價為a元,由利潤問題的數(shù)量關系表示出W與a的數(shù)量關系,由二次函數(shù)的性質就可以求出結論.
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC,點D是直線BC上一點(不與B、C重合),以AD為一邊在AD的右側作△ADE,使AD=AE,∠DAE=∠BAC,連接CE.
(1)如圖1,當點D在線段BC上,如果∠BAC=90°,則∠BCE=度;
(2)設∠BAC=α,∠BCE=β.
①如圖2,當點D在線段BC上移動,則α,β之間有怎樣的數(shù)量關系?請說明理由;
②當點D在直線BC上移動,則α,β之間有怎樣的數(shù)量關系?請直接寫出你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為響應推進中小學生素質教育的號召,某校決定在下午15點至16點開設以下選修課:音樂史、管樂、籃球、健美操、油畫.為了解同學們的選課情況,某班數(shù)學興趣小組從全校三個年級中各調查一個班級,根據(jù)相關數(shù)據(jù),繪制如下統(tǒng)計圖.
(1)請根據(jù)以上信息,直接補全條形統(tǒng)計圖(圖1)和扇形統(tǒng)計圖(圖2);
(2)若初一年級有180人,請估算初一年級中有多少學生選修音樂史?
(3)若該校共有學生540人,請估算全校有多少學生選修籃球課?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,點E在AB邊上,點F在BC邊的延長線上,且AE=CF
(1)求證:△AED≌△CFD;
(2)將△AED按逆時針方向至少旋轉多少度才能與△CFD重合,旋轉中心是什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小聰計劃中考后參加“我的中國夢”夏令營活動,需要一名家長陪同,爸爸、媽媽用猜拳的方式確定由誰陪同,即爸爸、媽媽都隨機作出“石頭”、“剪刀”、“布”三種手勢(如圖)中的一種,規(guī)定:“石頭”勝“剪刀”,“剪刀”勝“布”,“布”勝“石頭”,手勢相同,不分勝負
(1)爸爸一次出“石頭”的概率是多少?
(2)媽媽一次獲勝的概率是多少?請用列表或畫樹狀圖的方法加以說明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把大小和形狀完全相同的6張卡片分成兩組,每組3張,分別標上1、2、3,將這兩組卡片分別放入兩個盒子中攪勻,再從中隨機抽取一張.
(1)試求取出的兩張卡片數(shù)字之和為奇數(shù)的概率;
(2)若取出的兩張卡片數(shù)字之和為奇數(shù),則甲勝;取出的兩張卡片數(shù)字之和為偶數(shù),則乙勝;試分析這個游戲是否公平?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,∠A=30°,AB=16.點P是斜邊AB上一點.過點P作PQ⊥AB,垂足為P,交邊AC(或邊CB)于點Q,設AP=x,△APQ的面積為y,則y與x之間的函數(shù)圖象大致為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線 與x軸交于點A和點B,與y軸交于點C,已知點B的坐標為(3,0).
(1)求a的值和拋物線的頂點坐標;
(2)分別連接AC、BC.在x軸下方的拋物線上求一點M,使△AMC與△ABC的面積相等;
(3)設N是拋物線對稱軸上的一個動點,d=|AN﹣CN|.探究:是否存在一點N,使d的值最大?若存在,請直接寫出點N的坐標和d的最大值;若不存在,請簡單說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com