【題目】如圖1,Rt△ACB中,AC=3,BC=4,有一動(dòng)圓⊙O始終與Rt△ACB的斜邊AB相切于動(dòng)點(diǎn)P,且⊙O始終經(jīng)過直角頂點(diǎn)C.
(1)如圖2,當(dāng)⊙O 運(yùn)動(dòng)至與直角邊AC相切時(shí),求此時(shí)⊙O 的半徑r的長(zhǎng);
(2)試求⊙O 的半徑r的最小值.
【答案】(1)(2)
【解析】
(1)由勾股定理先求出AB的值,根據(jù)切線長(zhǎng)定理得出AP=AC,求出BP的長(zhǎng),再利用△ACB∽△OPB對(duì)應(yīng)邊成比例得出圓的半徑.
(2)先作出⊙O最大半徑時(shí)的圖,結(jié)合三角函數(shù)計(jì)算r的值.
(1)連接OP,
在Rt△ACB中,AC=3,BC=4,
∴AB===5,
∵AC,AP都是圓的切線,
∴AP=AC=3,
∴PB=2,
∵∠ACB=∠OPB=90°,∠B=∠B,
∴△ACB∽△OPB,
∴ ,
∴ ,
∴r= .
(2)如圖,當(dāng)點(diǎn)P與點(diǎn)B重合時(shí),⊙O的半徑最大,此時(shí)點(diǎn)O在BC的垂直平分線上,
過點(diǎn)O作OD⊥BC于點(diǎn)D,則BD=BC,
∵AB是切線,
∴∠ABO=90°,
∴∠ABC+∠OBD=∠BOD+∠OBD=90°,
∴∠ABC=∠BOD,
∴sin∠BOD= sin∠ABC===,
∴OB=,
即半徑的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,把一個(gè)直角三角尺ACB繞著30°角的頂點(diǎn)B順時(shí)針旋轉(zhuǎn),使得點(diǎn)A與CB的延長(zhǎng)線上的點(diǎn)E重合.
(1)三角尺旋轉(zhuǎn)了 度。
(2)連接CD,試判斷△CBD的形狀;
(3)求∠BDC的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)場(chǎng)學(xué)校積極開展陽(yáng)光體育活動(dòng),組織了九年級(jí)學(xué)生定點(diǎn)投籃,規(guī)定每人投籃3次.現(xiàn)對(duì)九年級(jí)(1)班每名學(xué)生投中的次數(shù)進(jìn)行統(tǒng)計(jì),繪制成如下的兩幅統(tǒng)計(jì)圖,根據(jù)圖中提供的信息,回答下列問題.
(1)求出九年級(jí)(1)班學(xué)生人數(shù);
(2)補(bǔ)全兩個(gè)統(tǒng)計(jì)圖;
(3)求出扇形統(tǒng)計(jì)圖中3次的圓心角的度數(shù);
(4)若九年級(jí)有學(xué)生200人,估計(jì)投中次數(shù)在2次以上(包括2次)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以△ABC的邊BC為直徑的⊙O交AC于點(diǎn)D,過點(diǎn)D作⊙O的切線交AB于點(diǎn)E.
(1)如圖1,若∠ABC=90°,求證:OE∥AC;
(2)如圖2,已知AB=AC,若sin∠ADE=, 求tanA的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,E為CD上一點(diǎn),連接AE,BD,且AE,BD交于點(diǎn)F,若EF:AF=2:5,求S△DEF:S四邊形EFBC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是一塊銳角三角形余料,邊BC=120mm,高AD=80mm,要把它加工成矩形零件,使一邊在BC上,其余兩個(gè)頂點(diǎn)分別在邊AB、AC上.
(1)若這個(gè)矩形是正方形,那么邊長(zhǎng)是多少?
(2)當(dāng)PQ的值為多少時(shí),這個(gè)矩形面積最大,最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線上部分點(diǎn)的橫坐標(biāo), 縱坐標(biāo)的對(duì)應(yīng)值如下表:
… | 0 | 1 | 2 | … | |||
… | 0 | 4 | 6 | 6 | 4 | … |
從上表可知,下列說法正確的是 .
①拋物線與軸的一個(gè)交點(diǎn)為;、趻佄锞與軸的交點(diǎn)為;
③拋物線的對(duì)稱軸是:直線; ④在對(duì)稱軸左側(cè)隨增大而增大.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點(diǎn)在第一象限,且過點(diǎn)(0,1)和(﹣1,0).下列結(jié)論:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤當(dāng)x>﹣1時(shí),y>0,其中正確結(jié)論的個(gè)數(shù)是
A.5個(gè) B.4個(gè) C.3個(gè) D.2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一條拋物線與x軸相交于A、B兩點(diǎn),其頂點(diǎn)P在折線C-D-E上移動(dòng),若點(diǎn)C、D、E的坐標(biāo)分別為(-1,4)、(3,4)、(3,1),點(diǎn)B的橫坐標(biāo)的最小值為1,則點(diǎn)A的橫坐標(biāo)的最大值為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com