如圖,在Rt△ABC中,∠B=90°,AB=1,BC=,以點C為圓心,CB為半徑的弧交CA于點D;以點A為圓心,AD為半徑的弧交AB于點E.
(1)求AE的長度;
(2)分別以點A、E為圓心,AB長為半徑畫弧,兩弧交于點F(F與C在AB兩側(cè)),連接AF、EF,設EF交弧DE所在的圓于點G,連接AG,試猜想∠EAG的大小,并說明理由.
(1)       (2)36°,理由見解析

試題分析:(1)在Rt△ABC中,由AB=1,BC=,
得AC==
∵以點C為圓心,CB為半徑的弧交CA于點D;以點A為圓心,AD為半徑的弧交AB于點E
∴BC=CD,AE=AD,
∴AE=AC﹣CD=
(2)∠EAG=36°,理由如下:
∵FA=FE=AB=1,AE=,
=,
∴△FAE是黃金三角形,
∴∠F=36°,∠AEF=72°,
∵AE=AG,
∴∠EAG=∠F=36°.
點評:本題考查了勾股定理在直角三角形中的應用,考查了相似三角形的證明和性質(zhì),本題中求證三角形相似是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:點P為正方形ABCD內(nèi)部一點,且∠BPC=90°,過點P的直線分別交邊AB、邊CD于點E、點F.
(1)如圖1,當PC=PB時,則SPBE、SPCF SBPC之間的數(shù)量關系為 _________ ;
(2)如圖2,當PC=2PB時,求證:16SPBE+SPCF=4SBPG
(3)在(2)的條件下,Q為AD邊上一點,且∠PQF=90°,連接BD,BD交QF于點N,若Sbpc=80,BE=6.求線段DN的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,正方形ABCD中,E、F分別是邊AD、CD上的點,DE=CF,AF與BE相交于O,DG⊥AF,垂足為G.
(1)求證:AF⊥BE;
(2)試探究線段AO、BO、GO的長度之間的數(shù)量關系;
(3)若GO:CF=4:5,試確定E點的位置.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知: == 且3a+2b-c="14" ,則 a+b+c 的值為            。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如下圖所示,在正方形ABCD中,P是BC上的點,且BP=3PC, Q是CD的中點.ΔADQ與ΔQCP是否相似?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

在相似的兩個三角形中,已知其中一個三角形三邊的長是3,4,5,另一個三角形有一邊長是2,則另一個三角形的周長是          

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在△ABC中,∠BAC=90°,AB<AC,M是BC邊的中點,MN⊥BC交AC于點N.動點P從點B出發(fā)沿射線BA以每秒厘米的速度運動.同時,動點Q從點N出發(fā)沿射線NC運動,且始終保持MQ丄MP.設運動時間為t秒(t>0).
(1)△PBM與△QNM相似嗎?以圖1為例說明理由:
(2)若∠ABC=60°,AB=4厘米.
①求動點Q的運動速度;
②設△APQ的面積為S(平方厘米),求S與t的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,巳知△ABC是面積為的等邊三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC與DE相交于點F,則△AEF的面積等于 _________ (結果保留根號).
 

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,已知Rt△ABC中,∠C=90°,AC=4cm,BC=3cm,現(xiàn)將△ABC進行折疊,使頂點A、B重合,則折痕DE=       cm.

查看答案和解析>>

同步練習冊答案