已知方程2x27x20,不解方程,作一個(gè)新方程,使它的兩根分別是已知方程兩根的2倍.

 

答案:
解析:

設(shè)已知方程的兩根為x1x2,那么所求方程的兩根為2x1,2x2

x1x2,x1·x2=-1

2x12x22x1x2)=7,2x1·2x24x1·x2=-4

∴所求方程為y27y40

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于x的一元二次方程ax2+bx+c=0中,當(dāng)b2-4a≥0,方程的兩個(gè)根x1和x2不相等或相等,而且有x1+x2=-
b
a
,x1•x2=
c
a
;當(dāng)b2-4ac<0時(shí),方程無(wú)實(shí)數(shù)解.比如方程x2-7x+12=0的兩根x1=3,x2=4,則有b2-4ac=49-4×1×12=1>0,而且x1+x2=7,x1•x2=12,2x2+x+1=0,b2-4ac=1-4×2×1=-7<0,方程無(wú)解.根據(jù)以上情況解下列問(wèn)題.
已知Rt△ABC中,∠C=90°,BC=a,AC=b,a>b,且a,b是關(guān)于x的方程x2-(m-1)x+(m+4)=0的兩根,當(dāng)AB=5時(shí):(1)求m的值;(2)求a和b.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知α為銳角且cosα是方程2x2-7x+3=0的一個(gè)根,求
1-2sinαcosα
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1997•南京)已知x1,x2是方程2x2-7x+4=0的兩個(gè)根,則x1+x2=
7
2
7
2
,x1•x2=
2
2
,(x1-x22=
17
4
17
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•西城區(qū)模擬)探索一個(gè)問(wèn)題:“任意給定一個(gè)矩形A,是否存在另一個(gè)矩形B,它的周長(zhǎng)和面積分別是已知矩形周長(zhǎng)和面積的一半?”
(1)完成下列空格:
當(dāng)已知矩形A的邊長(zhǎng)分別為6和1時(shí),小明是這樣研究的:設(shè)所求矩形的一邊是x,則另一邊為(
7
2
-x),由題意得方程:x(
7
2
-x)=3,化簡(jiǎn)得:2x2-7x+6=0
∵b2-4ac=49-48>0,∴x1=
2
2
,x2=
3
2
3
2

∴滿足要求的矩形B存在.
小紅的做法是:設(shè)所求矩形的兩邊分別是x和y,由題意得方程組:
x+y=
7
2
xy=3
消去y化簡(jiǎn)后也得到:2x2-7x+6=0,(以下同小明的做法)
(2)如果已知矩形A的邊長(zhǎng)分別為2和1,請(qǐng)你仿照小明或小紅的方法研究是否存在滿足要求的矩形B.
(3)在小紅的做法中,我們可以把方程組整理為:
y=
7
2
-x
y=
3
x
,此時(shí)兩個(gè)方程都可以看成是函數(shù)解析式,從而我們可以利用函數(shù)圖象解決一些問(wèn)題.如圖,在同一平面直角坐標(biāo)系中畫(huà)出了一次函數(shù)和反比例函數(shù)的部分圖象,其中x和y分別表示矩形B的兩邊長(zhǎng),請(qǐng)你結(jié)合剛才的研究,回答下列問(wèn)題:(完成下列空格)
①這個(gè)圖象所研究的矩形A的面積為
8
8
;周長(zhǎng)為
18
18

②滿足條件的矩形B的兩邊長(zhǎng)為
9+
17
4
9+
17
4
9-
17
4
9-
17
4

查看答案和解析>>

同步練習(xí)冊(cè)答案