【題目】如圖,在ABCD中,,的平分線與DC交于點(diǎn)E,,BFAD的延長線交于點(diǎn)F,則BC等于  

A. 2 B. C. 3 D.

【答案】B

【解析】

根據(jù)平行四邊形性質(zhì)證,△AEF≌△AEB,EF=EB,AB=AF=5,再證△DEF≌△CEB,得BC=DF,

可得AF=AD+DF=AD+BC=2BC=5.

因?yàn),四邊形ABCD是平行四邊形,

所以,AD∥BC,AD=BC∠C=∠FDE,∠EBC=∠F,

因?yàn)椋?/span>的平分線與DC交于點(diǎn)E,

所以,∠FAE=∠BAE,∠AEB=∠AEF,

所以,△AEF≌△AEB,

所以,EF=EB,AB=AF=5,

所以,△DEF≌△CEB,

所以,BC=DF,

所以,AF=AD+DF=AD+BC=2BC=5,

所以,BC=2.5.

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于平面直角坐標(biāo)系xOy中的點(diǎn)A和點(diǎn)P,若將點(diǎn)P繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°后得到點(diǎn)Q,則稱點(diǎn)Q為點(diǎn)P關(guān)于點(diǎn)A的“垂鏈點(diǎn)”,圖1為點(diǎn)P關(guān)于點(diǎn)A的“垂鏈點(diǎn)”Q的示意圖.

1)如圖2,已知點(diǎn)A的坐標(biāo)為(0,0),點(diǎn)P關(guān)于點(diǎn)A的“垂鏈點(diǎn)”為點(diǎn)Q;

若點(diǎn)P的坐標(biāo)為(3,0),則點(diǎn)Q的坐標(biāo)為   

若點(diǎn)Q的坐標(biāo)為(﹣2,﹣1),則點(diǎn)P的坐標(biāo)為   ;

2)如圖3,已知點(diǎn)C的坐標(biāo)為(﹣1,0),點(diǎn)D在直線y2x2上,若點(diǎn)D關(guān)于點(diǎn)C的“垂鏈點(diǎn)”E在坐標(biāo)軸上,試求出點(diǎn)D的坐標(biāo);

3)如圖4,在平面直角坐標(biāo)系xOy,已知點(diǎn)A2,0),點(diǎn)Cy軸上的動點(diǎn),點(diǎn)A關(guān)于點(diǎn)C的“垂鏈點(diǎn)”是點(diǎn)B,連接BO、BA,則BO+BA的最小值是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ACDRt△BEC中,若AD=BEDC=EC,則不正確的結(jié)論是( )

A. Rt△ACDRt△BCE全等 B. OA=OB

C. EAC的中點(diǎn) D. AE=BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=(k為常數(shù)且k0)的圖象交于A(﹣1,a),B兩點(diǎn),與x軸交于點(diǎn)C.

(1)求此反比例函數(shù)的表達(dá)式;

(2)若點(diǎn)P在x軸上,且SACP=SBOC,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠BAC90°,AB4AC3,點(diǎn)D,E分別是AB,AC的中點(diǎn),點(diǎn)G,FBC邊上(均不與端點(diǎn)重合),DGEF.將△BDG繞點(diǎn)D順時(shí)針旋轉(zhuǎn)180°,將△CEF繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)180°,拼成四邊形MGFN,則四邊形MGFN周長l的取值范圍是___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,分別以AB,CD為邊向外作等邊ABECDF,連接AF,CE.求證:四邊形AECF為平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC,AC3cm,ACB90°ABC60°,將ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)至ABC,點(diǎn)C′在直線AB上,則邊AC掃過區(qū)域(圖中陰影部分)的面積為____________cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,用兩個(gè)邊長為10的小正方形拼成一個(gè)大的正方形.

1)大正方形的邊長長度是___________;

2)若沿次大正方形邊的方向剪出一個(gè)長方形,使長方形的邊與大正方形的邊重合或平行,能否使剪出的長方形的長寬之比3:2,且面積400cm2?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊ABC中,點(diǎn)DCB延長線上一點(diǎn),點(diǎn)EAC的中點(diǎn),連接DEAB于點(diǎn)F,以DE為邊向下作等邊DEG,連接CGFG,若FGDEBD+BF7,則CG的長為_____

查看答案和解析>>

同步練習(xí)冊答案