【題目】如圖,矩形ABCD中,E為BC上一點,DF⊥AE于F.
(1)△ABE與△ADF相似嗎?請說明理由.
(2)若AB=6,AD=12,BE=8,求DF的長.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB與CD相交于點O,OD平分∠BOE,∠FOD=90°,問OF是∠AOE的平分線嗎?請你補充完整小紅的解答過程.
探究:
(1)當∠BOE=70°時,
∠BOD=∠DOE=,
∠EOF=90°﹣∠DOE= °,
而∠AOF+∠FOD+∠BOD=180°,
所以∠AOF+∠BOD=180°﹣∠FOD=90°,
所以∠AOF=90°﹣∠BOD= °,
所以∠EOF=∠AOF,OF是∠AOE的平分線.
(2)參考上面(1)的解答過程,請你證明,當∠BOE為任意角度時,OF是∠AOE的平分線.
(3)直接寫出與∠AOF互余的所有角.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P是∠AOB的邊OB上的一點.
(1)過點P畫OB的垂線,交OA于點C,
(2)過點P畫OA的垂線,垂足為H,
(3)線段PH的長度是點P到 的距離,線段 是點C到直線OB的距離.
(4)因為直線外一點到直線上各點連接的所有線中,垂線段最短,所以線段PC、PH、OC這三條線段大小關系是 (用“<”號連接)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列結論中正確的是( )
A.0既是正數(shù),又是負數(shù) B.O是最小的正數(shù)
C.0是最大的負數(shù) D.0既不是正數(shù),也不是負數(shù)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知等腰三角形的一個內角為70°,則另兩個內角的度數(shù)是( 。
A. 55°,55° B. 70°,40°
C. 55°,55°或70°,40° D. 以上都不對
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某旅游景點的門票價格如下表:
購票人數(shù)/人 | 1﹣50 | 51﹣100 | 100以上 |
每人門票價/元 | 80 | 75 | 70 |
某校八年級(1)、(2)兩班共100多人計劃去游覽該景點,其中(1)班人數(shù)少于50人,(2)班人數(shù)有50多人,如果兩班都以班為單位單獨購票,則一共支付7965元;如果兩班聯(lián)合起來作為一個團體購票,則只需花費7210元.兩個班各有多少名學生?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.無限小數(shù)是無理數(shù);
B.零是整數(shù),但不是正數(shù),也不是負數(shù);
C.分數(shù)包括正分數(shù)、負分數(shù)和零;
D.有理數(shù)不是正數(shù)就是負數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,直線l:y=3x+3與x軸交于點A,與y軸交于點B.把△AOB沿y軸翻折,點A落到點C,拋物線過點B、C和D(3,0).
(1)求直線BD和拋物線的解析式.
(2)若BD與拋物線的對稱軸交于點M,點N在坐標軸上,以點N、B、D為頂點的三角形與△MCD相似,求所有滿足條件的點N的坐標.
(3)在拋物線上是否存在點P,使S△PBD=6?若存在,求出點P的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,在正方形ABCD中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是∠DCP的平分線上一點.若∠AMN=90°,求證:AM=MN.
下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.
證明:在邊AB上截取AE=MC,連接ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°﹣∠AMN﹣∠AMB=180°﹣∠B﹣∠AMB=∠MAB=∠MAE.
(下面請你完成余下的證明過程)
(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),N是∠ACP的平分線上一點,則∠AMN=60°時,結論AM=MN是否還成立?請說明理由.
(3)若將(1)中的“正方形ABCD”改為“正n邊形ABCD…X,請你作出猜想:當∠AMN= 時,結論AM=MN仍然成立.(直接寫出答案,不需要證明)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com