【題目】如圖,⊙O的直徑AB=4,∠BAC=30°,AC交⊙O于D,D是AC的中點(diǎn).
(1)過點(diǎn)D作DE⊥BC,垂足為E,求證:直線DE是⊙O的切線;
(2)求與線段DE、BE圍成的陰影面積.
【答案】證明見解析;(2).
【解析】分析: (1)連接OD,易證DO是△ABC的中位線,從而可知OD∥BC,所以∠EDO=∠CED,由于DE⊥BC,從而可知DE是⊙O的切線;(2)連接BD,分別求出四邊形OBED與扇形OBD的面積,然后即可求出陰影部分面積.
本題解析:
(1)證明:連接OD.
∵D是AC的中點(diǎn),O是AB的中點(diǎn),
∴DO是△ABC的中位線,
∴OD∥BC,則∠EDO=∠CED
又∵DE⊥BC,
∴∠CED=90°,
∴∠EDO=∠CED=90°
∴OD⊥DE
∴DE是⊙O的切線,
(2)連接BD
∵AB是直徑
∴∠ADB=90°
∵∠BAC=30°,AB=4
∴BD=2∠ABD=60°
∵OB=OD
∴△OBD是等邊三角形
∴∠ODB=∠BOD=60°,OB=OD=BD=2
∵∠EDO=90°
∴∠BDE=30°
∴在Rt△BDE中 BE=1,DE=
∴S陰=S四邊形ODEB﹣S扇形OBD= =
答:陰影面積為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)統(tǒng)計(jì),2016年某市的初中畢業(yè)生人數(shù)約有43900人,這個(gè)數(shù)字用科學(xué)記數(shù)法可以表示為( )
A.4.39×105
B.43.9×103
C.4.39×104
D.0.439×105
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為豐富學(xué)生的校園生活,某校舉行“與愛同行”朗誦比賽,賽后整理參賽同學(xué)的成績(jī),繪制成如下不完整的統(tǒng)計(jì)圖表,請(qǐng)根據(jù)圖表中的信息解答下列問題.
組別 | 成績(jī)x(分) | 頻數(shù)(人數(shù)) |
A | 8.0≤x<8.5 | a |
B | 8.5≤x<9.0 | 8 |
C | 9.0≤x<9.5 | 15 |
D | 9.5≤x<10 | 3 |
(1)圖中a= ,這次比賽成績(jī)的眾數(shù)落在 組;
(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;
(3)學(xué)校決定選派本次比賽成績(jī)最好的3人參加全市中學(xué)生朗誦比賽,并為參賽選手準(zhǔn)備了2件白色、1件藍(lán)色上衣和黑色、藍(lán)色、白色的褲子各1條,小軍先選,他從中隨機(jī)選取一件上衣和一條褲子搭配成一套衣服,請(qǐng)用畫樹狀圖法或列表法求出上衣和褲子搭配成不同顏色的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)單項(xiàng)式加上多項(xiàng)式x2﹣6x+4后等于一個(gè)整式的平方,試求這樣的單項(xiàng)式并寫出相應(yīng)的等式(請(qǐng)寫3個(gè))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將含有30°角的直角三角板OAB按如圖所示的方式放置在平面直角坐標(biāo)系中,OB在x軸上,若OA=4,將三角板繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn),每秒旋轉(zhuǎn)60°,則第2017秒時(shí),點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)為( 。
A. (0,4) B. (2,﹣2) C. (﹣2,2) D. (0,﹣4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8,點(diǎn)P從點(diǎn)A出發(fā)沿邊AC向點(diǎn)C以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)C出發(fā)沿邊CB向點(diǎn)B以每秒a個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),過點(diǎn)P作PD⊥BC,交AB于點(diǎn)D,連接PQ.當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t≥0).
(1)當(dāng)a=2時(shí),解答下列問題:
①Q(mào)B= ,PD= .(用含t的代數(shù)式分別表示)
②通過計(jì)算說明,不存在t的值使得四邊形PDBQ為菱形.
(2)當(dāng)a為某個(gè)數(shù)值時(shí),四邊形PDBQ在某一時(shí)刻為菱形,求a的值及四邊形PDBQ為菱形時(shí)t的值.
(3)當(dāng)t=2時(shí),在整個(gè)運(yùn)動(dòng)過程中,恰好存在線段PQ的中點(diǎn)M到△ABC三邊距離相等,直接寫出此刻a的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com