【題目】如圖,四邊形ABCO是平行四邊形,OA=2,AB=6,點(diǎn)C在x軸的負(fù)半軸上,將平行四邊形 ABCO繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到平行四邊形ADEF,AD經(jīng)過點(diǎn)O,點(diǎn)F恰好落在x軸的正半軸上.若點(diǎn)D在反比例函數(shù)y=(x<0)的圖象上,則k的值為( )
A.4B.12C.8D.6
【答案】A
【解析】
結(jié)合圖形可知,作DM⊥x軸,MO為橫坐標(biāo),MD為縱坐標(biāo),則求點(diǎn)D坐標(biāo)轉(zhuǎn)化為求MO和MD的長(zhǎng)度;已知四邊形ADEF是由四邊形ABCO旋轉(zhuǎn)而來,則∠BAO=∠OAF,AO=AF,根據(jù)平行四邊形性質(zhì)可知AB∥OC,則可得∠BAO=∠AOF,進(jìn)而可得∠AOF=60°=∠DOM;根據(jù)OA=2,AB=6可得OD=4,再通過三角函數(shù)即可求出MO和MD,據(jù)此可得答案.
解:如圖,作DM⊥x軸,
由題意∠BAO=∠OAF,AO=AF,AB∥OC,
∴∠BAO=∠AOF=∠OAF=∠AFO,
∴∠AOF=60°=∠DOM.
∵OD=AD-OA=AB-OA=6-2=4,
∴∠ODM=30,
∴MO=2,MD==2,
∴D(-2,-2),
∴k=-2×(-2)=4.
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+4ax+c的最大值為4,且圖象過點(diǎn)(﹣3,0).
(1)求二次函數(shù)解析式;
(2)若將該二次函數(shù)的圖象繞著原點(diǎn)旋轉(zhuǎn)180°,請(qǐng)直接寫出旋轉(zhuǎn)后圖象的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在以點(diǎn)為圓心的兩個(gè)同心圓中,大圓的弦交小圓于點(diǎn)、.
(1)求證:;
(2)若大圓的半徑,小圓的半徑,且圓心到直線的距離為,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線(a>0)過A(3,),B(4,)兩點(diǎn),則、之間的關(guān)系是_______________.(用“<”號(hào)連接)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)發(fā)現(xiàn):如圖1,點(diǎn)A為線段BC外一動(dòng)點(diǎn),且BC=a,AB=b.填空:
當(dāng)點(diǎn)A位于 時(shí),線段AC的長(zhǎng)取得最大值,且最大值為 (用含a,b的式子表示)
(2)應(yīng)用:點(diǎn)A為線段BC外一動(dòng)點(diǎn),且BC=4,AB=1,如圖2所示,分別以AB,AC為邊,作等邊三角形ABD和等邊三角形ACE,連接CD,BE.
①請(qǐng)找出圖中與BE相等的線段,并說明理由;②直接寫出線段BE長(zhǎng)的最大值.
(3)拓展:如圖3,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)B的坐標(biāo)為(6,0),點(diǎn)P為線段AB外一動(dòng)點(diǎn),且PA=2,PM=PB,∠BPM=90°,請(qǐng)直接寫出線段AM長(zhǎng)的最大值及此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+bx+c,函數(shù)值y與自變量x之間的部分對(duì)應(yīng)值如下表:
x | … | ﹣4 | ﹣1 | 0 | 1 | … |
y | … | ﹣2 | ﹣1 | ﹣2 | ﹣7 | … |
(1)此二次函數(shù)圖象的對(duì)稱軸是直線,此函數(shù)圖象與x軸交點(diǎn)個(gè)數(shù)為 .
(2)求二次函數(shù)的函數(shù)表達(dá)式;
(3)當(dāng)﹣5<x<﹣1時(shí),請(qǐng)直接寫出函數(shù)值y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了保證人們上下樓的安全,樓梯踏步的寬度和高度都要加以限制.中小學(xué)樓梯寬度的范圍是260mm~300mm含(300mm),高度的范圍是120mm~150mm(含150mm).如圖是某中學(xué)的樓梯扶手的截面示意圖,測(cè)量結(jié)果如下:AB,CD分別垂直平分踏步EF,GH,各踏步互相平行,AB=CD,AC=900mm,∠ACD=65°,試問該中學(xué)樓梯踏步的寬度和高度是否符合規(guī)定.(結(jié)果精確到1mm,參考數(shù)據(jù):sin65°≈0.906,cos65°≈0.423)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在公園有兩座垂直于水平地面且高度不一的圓柱,兩座圓柱后面有一堵與地面互相垂直的墻,且圓柱與墻的距離皆為公分.敏敏觀察到高度公分矮圓柱的影子落在地面上,其影長(zhǎng)為公分;而高圓柱的部分影子落在墻上,如圖所示.
已知落在地面上的影子皆與墻面互相重直,并視太陽光為平行光,在不計(jì)圓柱厚度與影子寬度的情況下,請(qǐng)回答下列問題:
(1)若敏敏的身高為公分,且此刻她的影子完全落在地面上,則影長(zhǎng)為多少公分?
(2)若同一時(shí)間量得高圓柱落在墻上的影長(zhǎng)為公分,則高圓柱的高度為多少公分?請(qǐng)?jiān)敿?xì)解釋或完整寫出你的解題過程,并求出答案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)與反比例函數(shù)的圖象交于點(diǎn)(,),(,)。
(1)求這兩個(gè)函數(shù)的函數(shù)關(guān)系式;
(2)當(dāng)為何值時(shí),一次函數(shù)值不小于反比例函數(shù)值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com