【題目】如圖,在正方形ABCD中,E是邊AD上一點(diǎn),將ABE繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)90°ADF的位置.已知AF5,BE13.

1)求DE的長(zhǎng)度;

2BEDF是否垂直?說(shuō)明你的理由.

【答案】1DE7;(2BEDF垂直.理由見(jiàn)解析.

【解析】

1)根據(jù)旋轉(zhuǎn)的性質(zhì)得DFBE13,AEAF5,再在RtADF中利用勾股定理可計(jì)算出AD12,即可求出DE的長(zhǎng)度;

2)延長(zhǎng)BEDFH,根據(jù)旋轉(zhuǎn)的性質(zhì)得∠ABE=∠ADF,根據(jù)三角形內(nèi)角和定理可計(jì)算出∠FHB90°,即可判斷BHDF

解:(1)∵△ABE繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)90°得到△ADF

DFBE13,AEAF5,

RtADF中,∵AF5DF13,

AD12

DEADAE1257;

2BEDF垂直.理由如下:

延長(zhǎng)BEDFH,

∵△ABE繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)90°得到△ADF

∴∠ABE=∠ADF,

∵∠ADF+F90°,

∴∠ABE+F90°

∴∠FHB90°,

BHDF

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中, OBD中點(diǎn),以BC為邊向正方形內(nèi)作等邊BCE,連接并延長(zhǎng)AECDF,連接BD分別交CE,AFG ,H ,下列結(jié)論:①∠CEH=45°;②GF//DE;③2OH+DH=BD;④BG=DG;⑤BEC SBGC=.其中正確的結(jié)論是(

A.①②⑤B.①②④C.①②D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為響應(yīng)垃圾分類處理,改善生態(tài)環(huán)境,某小區(qū)將生活垃圾分成三類:廚余垃圾、可回收垃圾和其他垃圾,分別記為ab,c,并且設(shè)置了相應(yīng)的垃圾箱,“廚余垃圾”箱,“可回收垃圾”箱和“其他垃圾”箱,分別記為A,BC

1)小明將垃圾分裝在三個(gè)袋中,任意投放,用畫樹(shù)狀圖或列表的方法求把三個(gè)袋子都放錯(cuò)位置的概率是多少?

2)某學(xué)習(xí)小組為了了解居民生活垃圾分類投放的情況,現(xiàn)隨機(jī)抽取了某天三類垃圾箱中總共100噸的生活垃圾,數(shù)據(jù)統(tǒng)計(jì)如表(單位:噸):

A

B

C

a

40

10

10

b

3

24

3

c

2

2

6

調(diào)查發(fā)現(xiàn),在“可回收垃圾”中塑料類垃圾占10%,每回收1噸塑料類垃圾可獲得0.7噸二級(jí)原料,某城市每天大約產(chǎn)生200噸生活垃圾假設(shè)該城市每天處理投放正確的垃圾,每天大概可回收多少噸塑料類垃圾的二級(jí)原料?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx3x軸交于AB兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),A(﹣1,0),B30),直線l與拋物線交于AC兩點(diǎn),其中C點(diǎn)的橫坐標(biāo)為2

1)求拋物線的函數(shù)解析式;

2P是線段AC上的一個(gè)動(dòng)點(diǎn),過(guò)P點(diǎn)作y軸的平行線交拋物線于E點(diǎn),求線段PE長(zhǎng)度的最大值;

3)點(diǎn)G是拋物線上的動(dòng)點(diǎn),在x軸上是否存在點(diǎn)F,使AC,F,G這樣的四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿足條件的F點(diǎn)坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=(x﹣1)2+k的圖象與x軸交于點(diǎn)A(﹣1,0),C兩點(diǎn),與y軸交于點(diǎn)B.

(1)求拋物線解析式及B點(diǎn)坐標(biāo);

(2)在拋物線上是否存在點(diǎn)P使S△PAC=S△ABC?若存在,求出P點(diǎn)坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;

(3)在拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使△ABQ是等腰三角形,若存在,求出Q點(diǎn)坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,ADBC于點(diǎn)DBC=10cm,AD=8cm.點(diǎn)P從點(diǎn)B出發(fā),在線段BC上以每秒3cm的速度向點(diǎn)C勻速運(yùn)動(dòng),與此同時(shí),垂直于AD的直線m從底邊BC出發(fā),以每秒2cm的速度沿DA方向勻速平移,分別交AB、ACADE、F、H,當(dāng)點(diǎn)P到達(dá)點(diǎn)C時(shí),點(diǎn)P與直線m同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t0).
1)當(dāng)t=2時(shí),連接DE、DF,求證:四邊形AEDF為菱形;
2)在整個(gè)運(yùn)動(dòng)過(guò)程中,問(wèn)所形成的△PEF是否存在最大面積;如果存在請(qǐng)求出,如果不存在說(shuō)明理由.
3)是否存在某一時(shí)刻t,使△PEF為直角三角形?若存在,請(qǐng)求出此時(shí)刻t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,邊長(zhǎng)為2的正方形OABC的頂點(diǎn)A、C分別在x軸的正半軸和y軸的負(fù)半軸上,二次函數(shù)y=x2+bx+c的圖象經(jīng)過(guò)B、C兩點(diǎn).

1)求該二次函數(shù)的解析式;

2)結(jié)合函數(shù)的圖象直接寫出不等式x2+bx+c0的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一張長(zhǎng)20cm、寬12cm的矩形紙板,將紙板四個(gè)角各剪去一個(gè)邊長(zhǎng)為cm的正方形,然后將四周突出部分折起,可制成一個(gè)無(wú)蓋紙盒.

1)這個(gè)無(wú)蓋紙盒的長(zhǎng)為   cm,寬為   cm;(用含x的式子表示)

2)若要制成一個(gè)底面積是180m2的無(wú)蓋長(zhǎng)方體紙盒,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A(–4,n),B(2,–4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)的圖象的兩個(gè)交點(diǎn)

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)求直線AB與x軸的交點(diǎn)C的坐標(biāo)及AOB的面積;

3)求不等式的解集(請(qǐng)直接寫出答案).

查看答案和解析>>

同步練習(xí)冊(cè)答案