如果點(diǎn)A、B在一個(gè)反比例函數(shù)的圖象上,點(diǎn)A的坐標(biāo)為(1,2),點(diǎn)B橫坐標(biāo)為2,那么A、B兩點(diǎn)之間的距離為   
【答案】分析:根據(jù)待定系數(shù)法由點(diǎn)A的坐標(biāo)(1,2),可求反比例函數(shù)的解析式,將點(diǎn)B橫坐標(biāo)2,代入可求點(diǎn)B坐標(biāo),再根據(jù)兩點(diǎn)間的距離公式即可求出A、B兩點(diǎn)之間的距離.
解答:解:設(shè)反比例函數(shù)的解析式為y=
∵點(diǎn)A在反比例函數(shù)的圖象上,
∴k=1×2=2,
∴反比例函數(shù)的解析式為y=,
∵點(diǎn)B橫坐標(biāo)為2,
∴點(diǎn)B縱坐標(biāo)為=1,即點(diǎn)B坐標(biāo)為(2,1),
∴A、B兩點(diǎn)之間的距離為:=
故答案為:
點(diǎn)評:考查了待定系數(shù)法求反比例函數(shù)的解析式和兩點(diǎn)間的距離公式,解答該題的關(guān)鍵是求出點(diǎn)B坐標(biāo),熟記兩點(diǎn)間的距離公式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知P(m,a)是拋物線y=ax2上的點(diǎn),且點(diǎn)P在第一象限.
(1)求m的值
(2)直線y=kx+b過點(diǎn)P,交x軸的正半軸于點(diǎn)A,交拋物線于另一點(diǎn)M.
①當(dāng)b=2a時(shí),∠OPA=90°是否成立?如果成立,請證明;如果不成立,舉出一個(gè)反例說明;
②當(dāng)b=4時(shí),記△MOA的面積為S,求
1s
的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在四邊形ABCD的AB邊上任取一點(diǎn)E(點(diǎn)E不與點(diǎn)A、點(diǎn)B重合),分別連接ED、EC,可以把四邊形ABCD分成3個(gè)三角形.如果其中有2個(gè)三角形相似,我們就把點(diǎn)E叫做四邊形ABCD的AB邊上的相似點(diǎn);如果這3個(gè)三角形都相似,我們就把點(diǎn)E叫做四邊形ABCD的AB邊上的強(qiáng)相似點(diǎn).
(1)若圖1中,∠A=∠B=∠DEC=50°,說明點(diǎn)E是四邊形ABCD的AB邊上的相似點(diǎn);
精英家教網(wǎng)
(2)①如圖2,畫出矩形ABCD的AB邊上的一個(gè)強(qiáng)相似點(diǎn).(要求:畫圖工具不限,不寫畫法,保留畫圖痕跡或有必要的說明.)
②對于任意的一個(gè)矩形,是否一定存在強(qiáng)相似點(diǎn)?如果一定存在,請說明理由;如果不一定存在,請舉出反例.
(3)在梯形ABCD中,AD∥BC,AD<BC,∠B=90°,點(diǎn)E是梯形ABCD的AB邊上的一個(gè)強(qiáng)相似點(diǎn),判斷AE與BE的數(shù)量關(guān)系并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•浙江一模)如圖1,在平面上,給定了半徑為r的⊙O,對于任意點(diǎn)P,在射線OP上取一點(diǎn)P′,使得OP•OP′=r2,這種把點(diǎn)P變?yōu)辄c(diǎn)P′的變換叫做反演變換,點(diǎn)P與點(diǎn)P′叫做互為反演點(diǎn),⊙O稱為基圓.
(1)如圖2,⊙O內(nèi)有不同的兩點(diǎn)A、B,它們的反演點(diǎn)分別是A′、B′,則與∠A′一定相等的角是
(C)
(C)

(A)∠O         (B)∠OAB        (C)∠OBA           (D)∠B′
(2)如圖3,⊙O內(nèi)有一點(diǎn)M,請用尺規(guī)作圖畫出點(diǎn)M的反演點(diǎn)M′;(保留畫圖痕跡,不必寫畫法).
(3)如果一個(gè)圖形上各點(diǎn)經(jīng)過反演變換得到的反演點(diǎn)組成另一個(gè)圖形,那么這兩個(gè)圖形叫做互為反演圖形.已知基圓O的半徑為r,另一個(gè)半徑為r1的⊙C,作射線OC交⊙C于點(diǎn)A、B,點(diǎn)A、B關(guān)于⊙O的反演點(diǎn)分別是A′、B′,點(diǎn)M為⊙C上另一點(diǎn),關(guān)于⊙O的反演點(diǎn)為M′.求證:∠A′M′B′=90°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第20章《二次函數(shù)和反比例函數(shù)》中考題集(41):20.5 二次函數(shù)的一些應(yīng)用(解析版) 題型:解答題

已知P(m,a)是拋物線y=ax2上的點(diǎn),且點(diǎn)P在第一象限.
(1)求m的值
(2)直線y=kx+b過點(diǎn)P,交x軸的正半軸于點(diǎn)A,交拋物線于另一點(diǎn)M.
①當(dāng)b=2a時(shí),∠OPA=90°是否成立?如果成立,請證明;如果不成立,舉出一個(gè)反例說明;
②當(dāng)b=4時(shí),記△MOA的面積為S,求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》中考題集(42):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

已知P(m,a)是拋物線y=ax2上的點(diǎn),且點(diǎn)P在第一象限.
(1)求m的值
(2)直線y=kx+b過點(diǎn)P,交x軸的正半軸于點(diǎn)A,交拋物線于另一點(diǎn)M.
①當(dāng)b=2a時(shí),∠OPA=90°是否成立?如果成立,請證明;如果不成立,舉出一個(gè)反例說明;
②當(dāng)b=4時(shí),記△MOA的面積為S,求的最大值.

查看答案和解析>>

同步練習(xí)冊答案