【題目】已知拋物線y=x2+bx+c經(jīng)過(guò)A(﹣1,0),B(3,0)兩點(diǎn),與y軸相交于點(diǎn)C,該拋物線的頂點(diǎn)為點(diǎn)D.

(1)求該拋物線的解析式及點(diǎn)D的坐標(biāo);

(2)連接AC,CD,BD,BC,設(shè)△AOC、△BOC、△BCD的面積分別為S1,S2和S3,求證:S3=;

(3)點(diǎn)M是線段AB上一動(dòng)點(diǎn)(不包括點(diǎn)A和點(diǎn)B),過(guò)點(diǎn)M作MN∥BC交AC于點(diǎn)N,連接MC,是否存在點(diǎn)M使∠AMN=∠ACM?若存在,求出點(diǎn)M的坐標(biāo)和此時(shí)直線MN的解析式;若不存在,請(qǐng)說(shuō)明理由.

【答案】(1)y=x2﹣2x﹣3;點(diǎn)D的坐標(biāo)為(1,﹣4);(2)證明見(jiàn)解析;(3)存在點(diǎn)M使∠AMN=∠ACM.點(diǎn)M的坐標(biāo)為(,0),直線MN的解析式為y=x﹣

【解析】試題分析:(1)直接利用交點(diǎn)式寫(xiě)出拋物線的解析式,然后把解析式配成頂點(diǎn)式得到點(diǎn)D的坐標(biāo);

(2)如圖,先確定C(0,﹣3),再利用兩點(diǎn)間的距離公式計(jì)算出BC、CD、BD的長(zhǎng),利用勾股定理的逆定理證明△BCD為直角三角形,∠BCD=90°,然后根據(jù)三角形面積公式分別計(jì)算出S1,S2和S3,從而得到結(jié)論;

(3)設(shè)點(diǎn)M的坐標(biāo)為(m,0)(﹣1<m<3),則MA=m+1,AC=,利用MN∥BC得到AM:AB=AN:AC,利用比例性質(zhì)得AN=(m+1),再證明△AMN∽△ACM,利用相似比得到(m+1)2=(m+1),則解方程可得到m的值,從而得到M點(diǎn)的坐標(biāo),然后利用待定系數(shù)法求出BC的解析式,最后利用MN∥BC可求出直線MN的解析式.

試題解析:(1)拋物線的解析式為y=(x+1)(x﹣3),即y=x2﹣2x﹣3;

∵y=(x﹣1)2﹣4,

∴點(diǎn)D的坐標(biāo)為(1,﹣4);

(2)如圖,當(dāng)x=0時(shí),y=x2﹣2x﹣3=﹣3,則C(0,﹣3),而A(﹣1,0),B(3,0),

∴CD==,BC==3,BD==2

∴CD2+BC2=BD2,∴△BCD為直角三角形,∠BCD=90°,

∴S3=CDBC=× ×3 =3,

∵S1=OAOC=×1×3=,S2=OCOB=×3×3=,

∴S3=

(3)存在點(diǎn)M使∠AMN=∠ACM.

設(shè)點(diǎn)M的坐標(biāo)為(m,0)(﹣1<m<3),則MA=m+1,AC==,

∵M(jìn)N∥BC,

∴AM:AB=AN:AC,即(m+1):AN=4: ,解得AN=(m+1),

∵∠AMN=∠ACM,∠MAN=∠CAM,

∴△AMN∽△ACM,

∴AM:AC=AN:AM,即(m+1)2= (m+1),

解得m1=﹣1(舍去),m2=,

∴點(diǎn)M的坐標(biāo)為(,0),

設(shè)直線BC的解析式為y=kx+b,把B(3,0),C(0,﹣3)代入得 ,解得

∴BC的解析式為y=x﹣3,

又∵M(jìn)N∥BC,

∴設(shè)直線MN的解析式為y=x+n,

把點(diǎn)M的坐標(biāo)為(,0)代入得n=﹣,

∴直線MN的解析式為y=x﹣

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:a3a3+(﹣2a32+(﹣a23_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列算式:71=7,72=49,73=343,74=2401,….根據(jù)上述算式中的規(guī)律,你認(rèn)為72006的個(gè)位數(shù)字是( )
A.7
B.9
C.3
D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中錯(cuò)誤的是( 。

A. 三角形的中線、角平分線、高都是線段

B. 任意三角形的內(nèi)角和都是 180°

C. 多邊形的外角和等于 360°

D. 三角形的一個(gè)外角大于任何一個(gè)內(nèi)角

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A,B兩數(shù)的平均數(shù)是16,B,C兩數(shù)的平均數(shù)是21,那么CA__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知反比例函數(shù):y=與一次函數(shù)y=k2x+b的圖象交于點(diǎn)A(1,8)、B(﹣4,m).

(1)分別求反比例函數(shù)和一次函數(shù)的解析式;

(2)若M(x1,y1)、N(x2,y2)是反比例函數(shù)y=圖象上的兩點(diǎn),且x1<x2,y1<y2,指出點(diǎn)M,N各位于哪個(gè)象限,并簡(jiǎn)要說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】利用等式的基本性質(zhì)填空,并說(shuō)明運(yùn)用了等式的哪條基本性質(zhì).

(1)如果3x78,那么3x8________;

(2)如果2x53x,那么2x________5

(3)如果2x10,那么x________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某日王老師佩戴運(yùn)動(dòng)手環(huán)進(jìn)行快走鍛煉,兩次鍛煉后數(shù)據(jù)如表.與第一次鍛煉相比,王老師第二次鍛煉步數(shù)增長(zhǎng)的百分率是其平均步長(zhǎng)減少的百分率的3倍.設(shè)王老師第二次鍛煉時(shí)平均步長(zhǎng)減少的百分率為

項(xiàng)目

第一次鍛煉

第二次鍛煉

步數(shù)()

10000

____________

平均步長(zhǎng)(/)

0.6

____________

距離()

6000

7020

注:步數(shù)×平均步長(zhǎng)=距離.

(1)根據(jù)題意完成表格填空;

(2)x;

(3)王老師發(fā)現(xiàn)好友中步數(shù)排名第一為24000步,因此在兩次鍛煉結(jié)束后又走了500米,使得總步數(shù)恰好為24000步,求王老師這500米的平均步長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各式能用完全平方公式進(jìn)行分解因式的是( )
A.x2+1
B.x2+2x﹣1
C.x2+x+1
D.x2+4x+4

查看答案和解析>>

同步練習(xí)冊(cè)答案