【題目】如圖,在中,,邊上的動點(diǎn)(不與點(diǎn)重合),將沿所在直線翻折,得到,連接, 則下面結(jié)論錯誤的是(

A.當(dāng)時,

B.當(dāng)時,∠

C.當(dāng) 時,

D.長度的最小值是1

【答案】C

【解析】

A.根據(jù)折疊性質(zhì)和三角形內(nèi)角和定理可證∠ABP=CPB,從而可證;

B.根據(jù)折疊性質(zhì)和直角三角形斜邊上的中線等于斜邊的一半可知PA=PB=PC=PB,ABC、B四點(diǎn)共圓,根據(jù)圓周角定理即可求出;

C.根據(jù)相似三角形的判定證得△PAC∽△CAB,再根據(jù)相似三角形的對應(yīng)邊成比例求得AP的值,即可判斷錯誤;

D. 根據(jù)兩點(diǎn)之間線段最短,求得長度的最小值,即可判斷此結(jié)論正確.

在△ABC中,∠ACB=90°,AP=BP,
AP=BP=CP,∠BPC=

由折疊的性質(zhì)可得
CP=BP,∠CPB=BPC=
AP=BP
∴∠ABP=BAP=
∴∠ABP=CPB
AB//CP

A正確;



AP=BP,
PA=PB=PC=PB,
∴點(diǎn)A,BC,B在以點(diǎn)P為圓心,PA長為半徑的圓上
由折疊的性質(zhì)可得BC=BC,


∴∠BPC=2BAC

B正確;

當(dāng)CPAB時,∠APC=ACB

∵∠PAC=CAB

∴△PAC∽△CAB


∵在RtABC中,AC=

AP=

C錯誤;
由軸對稱的性質(zhì)可知:
BC=CB=3
CB長度固定不變,
∴當(dāng)AB+CB有最小值時,AB的長度有最小值
根據(jù)兩點(diǎn)之間線段最短可知:

當(dāng)A、B、C三點(diǎn)在一條直線上時,AB有最小值,

AB=AC-BC=4-3=1

D正確

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著交通道路的不斷完善,帶動了旅游業(yè)的發(fā)展,某市旅游景區(qū)有A、B、C、D、E等著名景點(diǎn),該市旅游部門統(tǒng)計(jì)繪制出2017年“五一”長假期間旅游情況統(tǒng)計(jì)圖,根據(jù)以下信息解答下列問題:

(1)2017年“五一”期間,該市周邊景點(diǎn)共接待游客 萬人,扇形統(tǒng)計(jì)圖中A景點(diǎn)所對應(yīng)的圓心角的度數(shù)是 ,并補(bǔ)全條形統(tǒng)計(jì)圖.

(2)根據(jù)近幾年到該市旅游人數(shù)增長趨勢,預(yù)計(jì)2018年“五一”節(jié)將有80萬游客選擇該市旅游,請估計(jì)有多少萬人會選擇去E景點(diǎn)旅游?

(3)甲、乙兩個旅行團(tuán)在A、B、D三個景點(diǎn)中,同時選擇去同一景點(diǎn)的概率是多少?請用畫樹狀圖或列表法加以說明,并列舉所用等可能的結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】低碳生活,綠色出行是我們倡導(dǎo)的一種生活方式,某校為了解學(xué)生對共享單車的使用情況,隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,并將這次調(diào)查的結(jié)果繪制了以下兩幅不完整的統(tǒng)計(jì)圖.

根據(jù)所給信息,解答下列問題:

1m   ;

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)這次調(diào)查結(jié)果的眾數(shù)是   ;

4)已知全校共3000名學(xué)生,請估計(jì)經(jīng)常使用共享單車的學(xué)生大約有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線yax2+bx+3a≠0)與x軸分別交于A(﹣30),B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的頂點(diǎn)E(﹣14),對稱軸交x軸于點(diǎn)F

1)請直接寫出這條拋物線和直線AE、直線AC的解析式;

2)連接ACAE、CE,判斷△ACE的形狀,并說明理由;

3)如圖2,點(diǎn)D是拋物線上一動點(diǎn),它的橫坐標(biāo)為m,且﹣3m<﹣1,過點(diǎn)DDKx軸于點(diǎn)KDK分別交線段AE、AC于點(diǎn)G、H.在點(diǎn)D的運(yùn)動過程中,

DG、GH、HK這三條線段能否相等?若相等,請求出點(diǎn)D的坐標(biāo);若不相等,請說明理由;

②在①的條件下,判斷CGAE的數(shù)量關(guān)系,并直接寫出結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某景區(qū)商店銷售一種紀(jì)念品,每件的進(jìn)貨價為40元.經(jīng)市場調(diào)研,當(dāng)該紀(jì)念品每件的銷售價為50元時,每天可銷售200件;當(dāng)每件的銷售價每增加1元,每天的銷售數(shù)量將減少10件.

1)當(dāng)銷售該紀(jì)念品每天能獲得利潤2160元時,每件的銷售價應(yīng)為多少?

2)當(dāng)每件的銷售價為多少時,銷售該紀(jì)念品每天獲得的利潤最大?并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于反比例函數(shù)y=﹣,下列說法錯誤的是( 。

A.圖象經(jīng)過點(diǎn)(1,﹣3

B.圖象分布在第一、三象限

C.圖象關(guān)于原點(diǎn)對稱

D.圖象與坐標(biāo)軸沒有交點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰△ABC中,AB=AC=4,BC=6點(diǎn)D在底邊BC上,且∠DAC=ACD,將△ACD沿著AD所在直線翻折,使得點(diǎn)C落到點(diǎn)E處,聯(lián)結(jié)BE,那么BE的長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在四邊形ABCD中,ABCD,對角線AC、BD交于點(diǎn)E,點(diǎn)F在邊AB上,連接CF交線段BE于點(diǎn)G,CG2=GEGD.

(1)求證:ACF=ABD;

(2)連接EF,求證:EFCG=EGCB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,切點(diǎn)為A,BC交⊙O于點(diǎn)D,點(diǎn)EAC的中點(diǎn).

1)試判斷直線DE與⊙O的位置關(guān)系,并說明理由;

2)若⊙O的半徑為2,∠B50°,AC6,求圖中陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊答案