【題目】(11·湖州)(本小題10分)
如圖,已知E、F分別是□ABCD的邊BC、AD上的點(diǎn),且BE=DF。
⑴求證:四邊形AECF是平行四邊形;
⑵若BC=10,∠BAC=90°,且四邊形AECF是菱形,求BE的長(zhǎng)。
【答案】
⑴證明:∵四邊形ABCD是平行四邊形,
∴AD∥BC,且AD=BC,…………………………………………………………………2分
∴AF∥EC,………………………………………………………………………………1分
∵BE=DF,
∴AF=EC……………………………………………………………………………………1分
∴四邊形AECF是平行四邊形……………………………………………………………1分
⑵解:∵四邊形AECF是菱形,
∴AE=EC,………………………………………1分
∴∠1=∠2,…………………………………………1分
∵∠3=90°-∠2,∠4=90°-∠1,
∴∠3=∠4,
∴AE=BE,…………………………………………2分
∴BE=AE=CE=BC=5………………………………1分
【解析】
(1)首先由已知證明AF∥EC,BE=DF,推出四邊形AECF是平行四邊形.
(2)由已知先證明AE=BE,即BE=AE=CE,從而求出BE的長(zhǎng)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AB=10,sinA=,CD為AB邊上的中線(xiàn),以點(diǎn)B為圓心,r為半徑作⊙B.如果⊙B與中線(xiàn)CD有且只有一個(gè)公共點(diǎn),那么⊙B的半徑r的取值范圍為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,△ABC是邊長(zhǎng)3cm的等邊三角形.動(dòng)點(diǎn)P以1cm/s的速度從點(diǎn)A出發(fā),沿線(xiàn)段AB向點(diǎn)B運(yùn)動(dòng).
(1)如圖1,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s),那么t= (s)時(shí),△PBC是直角三角形;
(2)如圖2,若另一動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿線(xiàn)段BC向點(diǎn)C運(yùn)動(dòng),如果動(dòng)點(diǎn)P、Q都以1cm/s的速度同時(shí)出發(fā).設(shè)運(yùn)動(dòng)時(shí)間為t(s),那么t為何值時(shí),△PBQ是直角三角形?
(3)如圖3,若另一動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿射線(xiàn)BC方向運(yùn)動(dòng).連接PQ交AC于D.如果動(dòng)點(diǎn)P、Q都以1cm/s的速度同時(shí)出發(fā).設(shè)運(yùn)動(dòng)時(shí)間為t(s),那么t為何值時(shí),△DCQ是等腰三角形?
(4)如圖4,若另一動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿射線(xiàn)BC方向運(yùn)動(dòng).連接PQ交AC于D,連接PC.如果動(dòng)點(diǎn)P、Q都以1cm/s的速度同時(shí)出發(fā).請(qǐng)你猜想:在點(diǎn)P、Q的運(yùn)動(dòng)過(guò)程中,△PCD和△QCD的面積有什么關(guān)系?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校八年級(jí)全體同學(xué)參加了某項(xiàng)捐款活動(dòng),隨機(jī)抽查了部分同學(xué)捐款的情況統(tǒng)計(jì)如圖所示
(1)本次共抽查學(xué)生____人,并將條形圖補(bǔ)充完整;
(2)捐款金額的眾數(shù)是_____,平均數(shù)是_____;
(3)在八年級(jí)700名學(xué)生中,捐款20元及以上(含20元)的學(xué)生估計(jì)有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y =(2m+1) x+ m-3
(1) 若函數(shù)圖象經(jīng)過(guò)原點(diǎn),求m的值.
(2) 若函數(shù)圖象在y軸的交點(diǎn)的縱坐標(biāo)為-2,求m的值.
(3)若函數(shù)的圖象平行直線(xiàn)y=-3x–3,求m的值.
(4)若這個(gè)函數(shù)是一次函數(shù),且y隨著x的增大而減小,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知y﹣2與x成正比例,當(dāng)x=2時(shí),y=6.
(1)求y與x之間的函數(shù)解析式.
(2)在所給直角坐標(biāo)系中畫(huà)出函數(shù)圖象.
(3)由函數(shù)圖象直接寫(xiě)出當(dāng)﹣2≤y≤2時(shí),自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 a b , a 與b 兩個(gè)數(shù)在數(shù)軸上對(duì)應(yīng)的點(diǎn)分別為點(diǎn) A 、點(diǎn) B ,求 A 、 B 兩點(diǎn)之間的距離.
(探索)
小明利用絕對(duì)值的概念,結(jié)合數(shù)軸,進(jìn)行探索:
(1)補(bǔ)全小明的探索
(應(yīng)用)
(2)若點(diǎn)C 對(duì)應(yīng)的數(shù)c ,數(shù)軸上點(diǎn)C 到A、B 兩點(diǎn)的距離相等,求c .(用含a、b 的代數(shù)式表示)
(3)若點(diǎn) D對(duì)應(yīng)的數(shù) d ,數(shù)軸上點(diǎn) D 到 A 的距離是點(diǎn) D 到 B 的距離的nn 0 倍,請(qǐng)?zhí)剿?/span> n 的取值范圍與點(diǎn) D 個(gè)數(shù)的關(guān)系,并直接寫(xiě)出a、b 、d、n 的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店銷(xiāo)售10臺(tái)A型和20臺(tái)B型電腦的利潤(rùn)為4000元,銷(xiāo)售20臺(tái)A型和10臺(tái)B型電腦的利潤(rùn)為3500元.
(1)求每臺(tái)A型電腦和B型電腦的銷(xiāo)售利潤(rùn);
(2)該商店計(jì)劃一次購(gòu)進(jìn)兩種型號(hào)的電腦共100臺(tái),其中B型電腦的進(jìn)貨量不超過(guò)A型電腦的2倍,設(shè)購(gòu)進(jìn)A型電腦x臺(tái),這100臺(tái)電腦的銷(xiāo)售總利潤(rùn)為y元.
①求y關(guān)于x的函數(shù)關(guān)系式;
②該商店購(gòu)進(jìn)A型、B型電腦各多少臺(tái),才能使銷(xiāo)售總利潤(rùn)最大?
(3)實(shí)際進(jìn)貨時(shí),廠(chǎng)家對(duì)A型電腦出廠(chǎng)價(jià)下調(diào)m(0<m<100)元,且限定商店最多購(gòu)進(jìn)A型電腦70臺(tái).若商店保持兩種電腦的售價(jià)不變,請(qǐng)你根據(jù)以上信息及(2)中條件,設(shè)計(jì)出使這100臺(tái)電腦銷(xiāo)售總利潤(rùn)最大的進(jìn)貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】10袋小麥稱(chēng)重后記錄如下(單位:kg).88.8,91,91.5,89,91.2,91.3,88.9,91.2,91,91.1.
(1)如果每袋小麥以90 kg為標(biāo)準(zhǔn),超過(guò)的千克數(shù)記作正數(shù),不足的千克數(shù)記作負(fù)數(shù),這10袋小麥總計(jì)超過(guò)多少千克或不足多少千克?
(2)10袋小麥一共多少千克?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com