【題目】如圖,在△ABC中,∠ABC與∠ACB的平分線交于點(diǎn)O,過(guò)O做EF∥BC分別交AB、AC于E、F.
(1)求證:EF=BE+CF.
(2)在△ABC中,∠ABC的角平分線與∠ACB相鄰的外角的平分線相交于點(diǎn)O,過(guò)O做EF∥BC分別交AB、AC于E、F,請(qǐng)你畫出圖形(不要求尺規(guī)作圖),并直接寫出EF、BE、CF之間的關(guān)系.
【答案】(1)證明見解析;(2)作圖見解析;EF=BE-CF
【解析】
(1)根據(jù)角平分線和平行線的性質(zhì)分別證明∠EBO=∠EOB,∠FOC=∠FCO,從而得出EO=BE,FO=CF,即可解決問(wèn)題;
(2)根據(jù)角平分線的額作法步驟,分別作出∠ABC和∠ACB的角平分線,兩條角平分線的交點(diǎn)即為點(diǎn)O,
(1)證明:∵BO平分∠ABC,
∴∠EBO=∠OBC,
∵EF∥BC,
∴∠EOB=∠OBC,
∴∠EBO=∠EOB,
∴EO=BE,
同理:FO=CF,
∴EO+FO=BE+CF,
即EF=BE+CF.
(2)以點(diǎn)B為圓心,以任意長(zhǎng)為半徑作弧,分別交BA和BC與點(diǎn)M和點(diǎn)D;
分別以M和D為圓心,以大于MD的一半為半徑作弧,交于點(diǎn)N,作射線BN,則射線BN即為∠ABC的角平分線;
同理作∠ACB外角的角平分線,兩線交于點(diǎn)O,過(guò)點(diǎn)O作BC的平行線交AB與點(diǎn)E,交AC于點(diǎn)F.如圖所示:
∵OE∥BC,
∴∠EOB=∠CBO,
∵BN是∠ABC的角平分線,
∴∠ABN=∠CBO,
∴∠ABN=∠EOB,
∴BE=OE,
∵OE∥BC,
∴∠OCK=∠FOC,
∵CU是∠ACK的角平分線,
∴∠OCK=∠FCO,
∴∠FCO=∠FOC,
∴FO=CF,
∴BE=EO=FO+EF=EF+CF,
∴EF=BE-CF
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一條直線上有兩只螞蟻,甲螞蟻在點(diǎn)A處,乙螞蟻在點(diǎn)B處,假設(shè)兩只螞蟻同時(shí)出發(fā),爬行方向只能沿直線AB在“向左”或“向右”中隨機(jī)選擇,并且甲螞蟻爬行的速度比乙螞蟻快.(1)甲螞蟻選擇“向左”爬行的概率為________;
(2)利用列表或畫樹狀圖的方法求兩只螞蟻開始爬行后會(huì)“觸碰到”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB=AD,∠1=∠2,要使△ABC≌△ADE,還需添加的條件是_________.(只需填一個(gè))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】夢(mèng)想商店進(jìn)了一批服裝,進(jìn)貨單價(jià)為元,如果按每件元出售,可銷售件,如果每件提價(jià)元出售,其銷售量就減少件.
現(xiàn)在獲利元,且銷售成本不超過(guò)元,問(wèn)這種服裝銷售單價(jià)應(yīng)定多少元?這時(shí)應(yīng)進(jìn)多少服裝?
當(dāng)銷售單價(jià)應(yīng)定多少元時(shí),該商店獲得最大利潤(rùn)?最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,△ABC中,∠A=68°,以AB為直徑的⊙O與AC,BC的交點(diǎn)分別為D,E
(Ⅰ)如圖①,求∠CED的大。
(Ⅱ)如圖②,當(dāng)DE=BE時(shí),求∠C的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】規(guī)定:sin(﹣x)=﹣sinx,cos(﹣x)=cosx,sin(x+y)=sinxcosy+cosxsiny.
據(jù)此判斷下列等式成立的是 (寫出所有正確的序號(hào))
①cos(﹣60°)=﹣;
②sin75°=;
③sin2x=2sinxcosx;
④sin(x﹣y)=sinxcosy﹣cosxsiny.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校傳統(tǒng)文化社團(tuán)某天進(jìn)行納新活動(dòng),組織初一新生選報(bào)興趣學(xué)社,由于當(dāng)天報(bào)名人數(shù)較多,從現(xiàn)場(chǎng)隨機(jī)抽查部分學(xué)生的報(bào)名意向進(jìn)行統(tǒng)計(jì),并繪制出不完全的頻數(shù)分布表和頻數(shù)分布直方圖,如下所示:
傳統(tǒng)文化 學(xué)社 | 報(bào)名頻數(shù) (人數(shù)) | 報(bào)名 頻率 | 錄取率 |
燈謎 | 12 | ||
書法 | 27 | 0.45 | 0.4 |
剪紙 | 0.3 | 0.35 | |
南音 |
請(qǐng)根據(jù)上述圖表,完成下列各題:
(1)填空: , , ,現(xiàn)場(chǎng)共抽查了 名學(xué)生;
(2)請(qǐng)把條線統(tǒng)計(jì)圖補(bǔ)充完整;
(3)現(xiàn)有1200個(gè)學(xué)生報(bào)名參加該校傳統(tǒng)文化社團(tuán),則可以估計(jì)被剪紙學(xué)社錄取的學(xué)生數(shù)比南音學(xué)社錄取的學(xué)生數(shù)多了多少人?若把所有被錄取人數(shù)按表中學(xué)社制作成扇形統(tǒng)計(jì)圖,則被燈謎學(xué)社錄取的學(xué)生數(shù)的扇形圓心角為多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形的邊長(zhǎng)為8,為上一點(diǎn), ,為邊上的一個(gè)動(dòng)點(diǎn),分別以為邊在正方形內(nèi)部作等邊三角形和等邊三角形.
(1)證明:;
(2)直線與交于點(diǎn),點(diǎn)在運(yùn)動(dòng)過(guò)程中.
①的度數(shù)是否發(fā)生改變?若不變,求出這個(gè)角的度數(shù);若改變,說(shuō)明理由;
②連結(jié),求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)概念:百度百科上這樣定義絕對(duì)值函數(shù):y=│x│=
并給出了函數(shù)的圖像(如圖).
方法遷移
借鑒研究正比例函數(shù)y=kx與一次函數(shù)y=kx+b(k,b是常數(shù),且k≠0)之間關(guān)系的經(jīng)驗(yàn),我們來(lái)研究函數(shù)y=│x+a│(a是常數(shù))的圖像與性質(zhì).
“從‘1’開始”
我們嘗試從特殊到一般,先研究當(dāng)a=1時(shí)的函數(shù)y=│x+1│.
按照要求完成下列問(wèn)題:
(1)觀察該函數(shù)表達(dá)式,直接寫出y的取值范圍;
(2)通過(guò)列表、描點(diǎn)、畫圖,在平面直角坐標(biāo)系中畫出該函數(shù)的圖像.
“從‘1’到一切”
(3)繼續(xù)研究當(dāng)a的值為-2,-,2,3,…時(shí)函數(shù)y=│x+a│的圖像與性質(zhì),
嘗試總結(jié):
①函數(shù)y=│x+a│(a≠0)的圖像怎樣由函數(shù)y=│x│的圖像平移得到?
②寫出函數(shù)y=│x+a│的一條性質(zhì).
知識(shí)應(yīng)用
(4)已知A(x1,y1),B(x2,y2)是函數(shù)y=│x+a│的圖像上的任意兩點(diǎn),且滿足x1<x2≤-1時(shí), y1>y2,則a的取值范圍是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com