【題目】如圖,在平面直角坐標系中,點A( ,0)是 軸上一點,以OA為對角線作菱形OBAC,使得 60°,現(xiàn)將拋物線 沿直線OC平移到 ,則當拋物線與菱形的AB邊有公共點時,則m的取值范圍是( )

A.
B.
C.
D.

【答案】D
【解析】連接BC交OA于點D,在菱形ABOC中,OD=OA=2
又因為∠BOC= 60°,
所以∠COA=∠BOC=30°,
則CD=BD=OD=2,
則C(2 , -2),B(2 , 2);
則直線OC的解析式為y=-x,
則拋物線y=(xm)2-m,
當拋物線對稱軸右半部分與線段AB交于點B時,
將B(2 , 2)代入得y=(xm)2-m,2=(2-m)2-m,
解得m= , 當m=時,拋物線對稱軸右半部分過點B;
當拋物線左半部分與線段AB交于點A時,
將A(4,0)代入y=(xm)2-m,得(4m)2-m=0,
解得m=或3 , 當m=時,拋物線對稱軸左半部分過點A;
綜上,≤ m ≤ .
故選D.
【考點精析】通過靈活運用二次函數(shù)的圖象和菱形的性質(zhì),掌握二次函數(shù)圖像關鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點;菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半即可以解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB、CD是⊙O的直徑,BE是⊙O的弦,且BE∥CD,過點C的切線與EB的延長線交于點P,連接BC.
(1)求證:BC平分∠ABP;
(2)求證:PC2=PBPE;
(3)若BE﹣BP=PC=4,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB與⊙O相切于點C,OA,OB分別交⊙O于點D,E, =
(1)求證:OA=OB;
(2)已知AB=4 ,OA=4,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知Rt△ABE中∠A=90°,∠B=60°,BE=10,D是線段AE上的一動點,過D作CD交BE于C,并使得∠CDE=30°,則CD長度的取值范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,2分別是某款籃球架的實物圖與示意圖,已知底座BC=0.60米,底座BC與支架AC所成的角∠ACB=75°,支架AF的長為2.50米,籃板頂端F點到籃框D的距離FD=1.35米,籃板底部支架HE與支架AF所成的角∠FHE=60°,求籃框D到地面的距離(精確到0.01米)(參考數(shù)據(jù):cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732, ≈1.732, ≈1.414)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】嘉興教育學院大學生小王利用暑假開展了30天的社會實踐活動,參與了嘉興浙北超市的經(jīng)營,了解到某成本為15元/件的商品在x天銷售的相關信息,如表表示:

銷售量p(件)

P=45﹣x

銷售單價q(元/件)

當1≤x≤18時,q=20+x
當18<x≤30時,q=38

設該超市在第x天銷售這種商品獲得的利潤為y元.
(1)求y關于x的函數(shù)關系式;
(2)在這30天中,該超市銷售這種商品第幾天的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,圖①是某電腦液晶顯示器的側面圖,顯示屏AO可以繞點O旋轉(zhuǎn)一定的角度.研究表明:顯示屏頂端A與底座B的連線AB與水平線BC垂直時(如圖②),人觀看屏幕最舒適.此時測得∠BAO=15°,AO=30cm,∠OBC=45°,求AB的長度.(結果精確到1 cm)(參考數(shù)據(jù):sin15°≈0.26,cos15°≈0.97, tan15°≈0.27, ≈1.414)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設不等式0<|x+2|﹣|1﹣x|<2的解集為M,a,b∈M
(1)證明:|a+ b|< ;
(2)比較|4ab﹣1|與2|b﹣a|的大小,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , a1=2,且滿足 (n∈N*). (Ⅰ)證明數(shù)列 為等差數(shù)列;
(Ⅱ)求S1+S2+…+Sn

查看答案和解析>>

同步練習冊答案