【題目】下列運算結(jié)果正確的是(
A. =﹣
B.(﹣0.1)2=0.01
C.( 2÷ =
D.(﹣m)3?m2=﹣m6

【答案】A
【解析】解:A、 =2 ﹣3 =﹣ ,正確,符合題意; B、(﹣0.1)2= =100,故此選項錯誤;
C、( 2÷ = × = ,故此選項錯誤;
D、(﹣m)3m2=﹣m5 , 故此選項錯誤;
故選:A.
【考點精析】解答此題的關(guān)鍵在于理解整數(shù)指數(shù)冪的運算性質(zhì)的相關(guān)知識,掌握aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù)),以及對同底數(shù)冪的乘法的理解,了解同底數(shù)冪的乘法法則aman=am+n(m,n都是正數(shù)).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+(k﹣5)x+1﹣k=0,其中k為常數(shù).
(1)求證:無論k為何值,方程總有兩個不相等實數(shù)根;
(2)已知函數(shù)y=x2+(k﹣5)x+1﹣k的圖象不經(jīng)過第三象限,求k的取值范圍;
(3)若原方程的一個根大于3,另一個根小于3,求k的最大整數(shù)值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCDBC中,A=40°AB=AC=2,BDC=140°BD=CD,以點D為頂點作MDN=70°,兩邊分別交AB,AC于點M,N,連接MN,則AMN的周長為___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,, ,, .

(1)三點在同一直線上,連接于點,求證: .

(2)在第(1)問的條件下,求證: ;

(3)繞點順時針旋轉(zhuǎn)得到圖2,那么第(2)問中的結(jié)論是否依然成立?若成立,請證明你的結(jié)論:若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀并解答問題:

明朝數(shù)學家程大位在其數(shù)學著作《直指算法統(tǒng)宗》中以《西江月》詞牌敘述了一道蕩秋千問題:原文:平地秋千未起,踏板一尺離地.送行二步與人齊,五尺人高曾記.仕女佳人爭蹴,終朝笑語歡嬉.良工高士素好奇,算出索長有幾?譯文:如圖,有一架秋千,當它靜止時,踏板離地尺,將它往前推送尺(水平距離)時,秋千的踏板就和人一樣高,這個人的身高為尺,秋千的繩索始終拉得很直,試問繩索有多長?(注:古代尺為步)

建立數(shù)學模型:如圖,秋千繩索靜止的時候,踏板離地高尺(尺),將它往前推進兩步(尺),此時踏板升高離地尺(尺).已知于點于點于點,點上,,求秋千繩索()的長度.請解答下列問題:

1)直接寫出四邊形是哪種特殊的四邊形;

2)求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一圓錐形糧堆,其側(cè)面展開圖是半徑為6m的半圓,糧堆母線AC的中點P處有一老鼠正在偷吃糧食,此時,小貓正在B處,它要沿圓錐側(cè)面到達P處捕捉老鼠,則小貓所經(jīng)過的最短路程長為( )

A.3m
B. m
C. m
D.4m

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知反比例函數(shù) 的圖象與一次函數(shù) 的圖象交于點A(1,4)、點B(-4,n).

(1)求 的值;
(2)求△OAB的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,將△ABC沿直線MN翻折后,頂點C恰好落在AB邊上的點D處,已知MN∥AB,MC=6,NC= ,則四邊形MABN的面積是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在每個小正方形的邊長為 的網(wǎng)格圖形中,每個小正方形的頂點稱為格點.從一個格點移動到與之相距 的另一個格點的運動稱為一次跳馬變換.例如,在 的正方形網(wǎng)格圖形中(如圖1),從點 經(jīng)過一次跳馬變換可以到達點 , , , 等處.現(xiàn)有 的正方形網(wǎng)格圖形(如圖2),則從該正方形的頂點 經(jīng)過跳馬變換到達與其相對的頂點 ,最少需要跳馬變換的次數(shù)是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案