如圖,直線y=x+2與拋物線y=ax2+bx+6(a≠0)相交于A(
1
2
,
5
2
)和B(4,m),點(diǎn)P是線段AB上異于A、B的動(dòng)點(diǎn),過(guò)點(diǎn)P作PC⊥x軸于點(diǎn)D,交拋物線于點(diǎn)C.
(1)求拋物線的解析式;
(2)是否存在這樣的P點(diǎn),使線段PC的長(zhǎng)有最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由.
考點(diǎn):二次函數(shù)綜合題
專題:
分析:(1)將點(diǎn)B坐標(biāo)代入直線解析式,求出m的值,然后把A、B坐標(biāo)代入二次函數(shù)解析式,求出a、b,即可求得解析式;
(2)設(shè)動(dòng)點(diǎn)P的坐標(biāo)為(n,n+2),點(diǎn)C的坐標(biāo)為(n,2n2-8n+6),表示出PC的長(zhǎng)度,然后利用配方法求出二次函數(shù)的最大值,并求出此時(shí)n的值.
解答:解:(1)∵B(4,m)在直線y=x+2上,
∴m=6,即B(4,6),
∵A(
1
2
5
2
)和B(4,6)在拋物線y=ax2+bx+6上,
(
1
2
)2a+
1
2
b+6=
5
2
16a+4b+6=6
,
解得:
a=2
b=-8
,
∴拋物線的解析式y(tǒng)=2x2-8x+6;

(2)存在.
設(shè)動(dòng)點(diǎn)P的坐標(biāo)為(n,n+2),點(diǎn)C的坐標(biāo)為(n,2n2-8n+6),
∴PC=(n+2)-(2n2-8n+6)=-2n2+9n-4=-2(n-
9
4
2+
49
8
,
∵-2<0,
∴開口向下,有最大值,
∴當(dāng)n=
9
4
時(shí),線段PC有最大值
49
8
點(diǎn)評(píng):本題考查了二次函數(shù)的綜合運(yùn)用,涉及了待定系數(shù)法求函數(shù)解析式,配方法求最值等知識(shí)點(diǎn),解答本題案的關(guān)鍵是根據(jù)解析式設(shè)出點(diǎn)P和點(diǎn)C的坐標(biāo),列出PC的代數(shù)式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算下列各式
(1)
3
2m-n
2m-n
4m2-4mn+n2

(2)
3
x-4
-
24
x2-16

(3)(
3x
x-2
-
x
x+2
)•
x2-4
x

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,∠B=90°,AB=6厘米,BC=8厘米,點(diǎn)P從點(diǎn)B出發(fā),沿BC以1厘米/秒的速度向點(diǎn)C移動(dòng),點(diǎn)Q從點(diǎn)C出發(fā),沿折線CAB以2厘米/秒的速度向點(diǎn)B移動(dòng).問(wèn):
(1)經(jīng)過(guò)多少秒后,PQ平分△ABC的面積;
(2)經(jīng)過(guò)多少秒后,△CPQ為直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,P(m,n)是拋物線y=
1
4
x2-1上任意一點(diǎn),l是過(guò)點(diǎn)(0,-2)且與x軸平行的直線,過(guò)點(diǎn)P作直線PH⊥l,垂足為H.
【特例探究】
(1)填空,當(dāng)m=0時(shí),OP=
 
,PH=
 
;當(dāng)m=4時(shí),OP=
 
,PH=
 

【猜想驗(yàn)證】
(2)對(duì)任意m,n,猜想OP與PH大小關(guān)系,并證明你的猜想.
【拓展應(yīng)用】
(3)如圖2,如果圖1中的拋物線y=
1
4
x2-1變成y=x2-4x+3,直線l變成y=m(m<-1).已知拋物線y=x2-4x+3的頂點(diǎn)為M,交x軸于A、B兩點(diǎn),且B點(diǎn)坐標(biāo)為(3,0),N是對(duì)稱軸上的一點(diǎn),直線y=m(m<-1)與對(duì)稱軸于點(diǎn)C,若對(duì)于拋物線上每一點(diǎn)都有:該點(diǎn)到直線y=m的距離等于該點(diǎn)到點(diǎn)N的距離.
①用含m的代數(shù)式表示MC、MN及GN的長(zhǎng),并寫出相應(yīng)的解答過(guò)程;
②求m的值及點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

元旦來(lái)臨,各大商場(chǎng)都設(shè)計(jì)了促進(jìn)消費(fèi)增加利潤(rùn)的促銷措施,“物美”商場(chǎng)把一類雙肩背的書包按進(jìn)價(jià)提高50%進(jìn)行標(biāo)價(jià),然后再打出8折的優(yōu)惠價(jià),這樣商場(chǎng)每賣出一個(gè)書包就可盈利8元,這種書包的進(jìn)價(jià)是(  )
A、42元B、40元
C、38元D、35元

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

作出如圖立體圖形的三視圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,小方格都是邊長(zhǎng)為1的正方形,則以格點(diǎn)為圓心,半徑為1和2的兩種弧圍成的“葉片狀”陰影圖案的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,將拋物線y=
3
3
x2先向右平移1個(gè)單位,再向下平移
4
3
3
個(gè)單位,得到新的拋物線y=ax2+bx+c,該拋物線與y軸交于點(diǎn)B,與x軸正半軸交于點(diǎn)C.
(1)求點(diǎn)B和點(diǎn)C的坐標(biāo);
(2)如圖1,有一條與y軸重合的直線l向右勻速平移,移動(dòng)的速度為每秒1個(gè)單位,移動(dòng)的時(shí)間為t秒,直線l與拋物線y=ax2+bx+c交于點(diǎn)P,當(dāng)點(diǎn)P在x軸上方時(shí),求出使△PBC的面積為2
3
的t值;
(3)如圖2,將直線BC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),與x軸交于點(diǎn)M(1,0),與拋物線y=ax2+bx+c交于點(diǎn)A,在y軸上有一點(diǎn)D(0,
2
3
3
),在x軸上另取兩點(diǎn)E,F(xiàn)(點(diǎn)E在點(diǎn)F的左側(cè)),EF=2,線段EF在x軸上平移,當(dāng)四邊形ADEF的周長(zhǎng)最小時(shí),先簡(jiǎn)單描述如何確定此時(shí)點(diǎn)E的位置?再直接寫出點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在甲、乙兩地之間修一條筆直的公路,從甲地測(cè)得公路的走向是北偏東47.5°,甲、乙兩地同時(shí)開工,若干天后,公路準(zhǔn)確接通,則乙地所修公路的走向是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案