分析 (1)連接OD,由OB=OD和角平分線性質(zhì)得出∠ODB=∠DBC.推出OD∥BC,得出∠ADO=∠C=90°,根據(jù)切線的判定推出即可;
(2)由OD∥BC得△AOD∽△ABC,得出$\frac{OD}{BC}$=$\frac{OA}{AB}$,求得OA,進(jìn)一步求得AB,然后利用勾股定理即可求出AC的長.
解答 (1)證明:連接OD,
∵DE⊥DB,⊙O是△BDE的外接圓,
∴BE是⊙O的直徑.
∵OB=OD,
∴∠OBD=∠ODB,
∵BD平分∠ABC,
∴∠OBD=∠DBC.
∴∠ODB=∠DBC.
∴OD∥BC,
∴∠ADO=∠C=90°,即OD⊥AC.
又∵點(diǎn)D在⊙O上,
∴AC是⊙O的切線.
(2)解:∵OD∥BC,
∴△AOD∽△ABC,
∴$\frac{OD}{BC}$=$\frac{OA}{AB}$,
∵⊙O的半徑為5cm,BC=8cm,
∴$\frac{5}{8}$=$\frac{OA}{OA+5}$,
解得:OA=$\frac{25}{3}$cm.
∴AB=5+$\frac{25}{3}$=$\frac{40}{3}$ cm.
在Rt△ACB中,由勾股定理得:AC=$\sqrt{A{B}^{2}-B{C}^{2}}$=$\frac{32}{3}$.
點(diǎn)評(píng) 此題考查了切線的判定,相似三角形的判定與性質(zhì)以及勾股定理的應(yīng)用,熟練掌握切線的判定方法是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
x | … | -2 | -1 | 0 | 1 | 2 | … |
y | … | 10 | 8 | 6 | 4 | 2 | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 開口向下 | B. | 頂點(diǎn)坐標(biāo)是(1,2) | C. | 對(duì)稱軸是x=-1 | D. | 與x軸有兩個(gè)交點(diǎn) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com