【題目】已知:如圖,在四邊形ABCD中,AB=AD=8,A=60°,D=150°,四邊形的周長為32,求BC和DC的長.

【答案】10

【解析】

試題分析:連接BD,根據(jù)等邊三角形的判定得到ABD是等邊三角形,相應(yīng)可求得ADB=60°,然后根據(jù)等量代換可得CDB=90°,即BDC是直角三角形,再根據(jù)四邊形的周長求得BC+CD=16,設(shè)CD=x,相應(yīng)可知BC=16-x,然后根據(jù)勾股定理可求得BC的長.

試題解析:解:連接BD

AB=AD,A=60°,

∴△ABD是等邊三角形.

∴∠ADB=60°.

∵∠ADC=150°,

∴∠CDB=90°

AD=8,四邊形的周長為32,

BC+CD=16

設(shè)CD=x則BC=16-x.

根據(jù)勾股定理

解得x=6

CD=6.

BC=10

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù) y=ax2+bx+c(a≠0),過(1,y1)(2,y2).

①若 y1>0 時,則 a+b+c>0

②若 a=b 時,則 y1<y2

③若 y1<0,y2>0,且 a+b<0,則 a>0

④若 b=2a﹣1,c=a﹣3,且 y1>0,則拋物線的頂點一定在第三象限上述四個判斷正確的有( )個.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,拋物線y=ax2+2ax+c與y軸交于點C,與x軸交于A,B兩點,點A在點B左側(cè).點B的坐標為(1,0),OC=3OB.

(1)求拋物線的解析式;

(2)當a>0時,如圖所示,若點D是第三象限方拋物線上的動點,設(shè)點D的橫坐標為m,三角形ADC的面積為S,求出S與m的函數(shù)關(guān)系式,并直接寫出自變量m的取值范圍;請問當m為何值時,S有最大值?最大值是多少.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市正在開展“食品安全城市”創(chuàng)建活動,為了解學生對食品安全知識的了解情況,學校隨機抽取了部分學生進行問卷調(diào)查,將調(diào)查結(jié)果按照“非常了解、了解、了解較少、不了解”四類分別進行統(tǒng)計,并繪制了下列兩幅統(tǒng)計圖(不完整).請根據(jù)圖中信息,解答下列問題:

1)此次共調(diào)查了__________名學生;

2)扇形統(tǒng)計圖中所在扇形的圓心角為__________°;

3)將上面的條形統(tǒng)計圖補充完整;

4)若該校共有1600名學生,請你估計對食品安全知識“非常了解”的學生的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:ABC在直角坐標平面內(nèi),三個頂點的坐標分別為A1,0)、B3,2)、C0,1)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).

(1)沿x軸向左平移2個單位,得到A1B1C1,不畫圖直接寫出發(fā)生變化后的點的坐標。點的坐標是 ;

(2)A點為位似中心,在網(wǎng)格內(nèi)畫出A2B2C2,使A2B2C2ABC位似,且位似比為21,則點的坐標是  ;

(3) A2B2C2的面積是 平方單位.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點D是△ABC內(nèi)一點,點E,F,G,H分別是ABAC,CD,BD的中點。

1)求證:四邊形EFGH是平行四邊形;(2)已知AD6BD4,CD3,∠BDC90°,求四邊形EFGH的周長。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某鋼鐵廠今年1月份鋼產(chǎn)量為5000噸,3月份上升到7200噸,設(shè)平均每月增長的百分率為,根據(jù)題意得方程(

A. 5000(1+x)+5000(1+x)2=7200 B. 5000(1+x2)=7200

C. 5000(1+x)2=7200 D. 5000+5000(1+x)2=7200

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在 Rt△POQ中,OP=OQ=4,M PQ中點,把一個三角尺頂點放在點M處,以M為旋轉(zhuǎn)心,旋轉(zhuǎn)三角尺,三角尺的兩直角邊與 Rt△POQ的兩直角邊分別交于點A、B.

(1)求證:MA=MB;

(2)探究:在旋轉(zhuǎn)三角尺的過程中,四邊形AOBM的面積是否發(fā)生變化?為什么?

(3)連接 AB,探究:在旋轉(zhuǎn)三角尺的過程中,△AOB的周長是否存在最小值?若存在,求出最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市今年中考理化實驗操作考試,采用學生抽簽方式?jīng)Q定自己的考試內(nèi)容.規(guī)定每位考生必須在三個物理實驗(用紙簽A、B、C表示)和三個化學試驗(用紙簽D、E、F表示)中各抽取一個實驗操作進行考試,小剛在看不到紙簽的情況下,分別從中各隨機抽取一個.用列表或畫樹狀圖的方法求小剛抽到物理實驗B和化學實驗F的概率.

查看答案和解析>>

同步練習冊答案