【題目】請觀察下列算式,找出規(guī)律并填空

=1-=-, =-, =-

則第10個算式是 _____________=_____________

第n個算式是 ___________=_____________

根據(jù)以上規(guī)律解答以下三題:(1)

(2)若有理數(shù)a、b滿足|a-1|+=0 ,試求:

+++ …+的值.

【答案】 ;

【解析】歸納總結(jié)得到一般性規(guī)律,寫出第10個等式及第n個等式即可;

(1)原式變形后,計(jì)算即可得到結(jié)果;

(2)利用非負(fù)數(shù)的性質(zhì)求出a與b的值,代入原式計(jì)算即可得到結(jié)果.

第10個算式是=;

第n個算式是=;

(1) =1-

(2)由題意得a=1,b=3;

+++ …… +的值.

=+++ …… + = (1-)=

“點(diǎn)睛”此題考查了有理數(shù)的混合運(yùn)算,熟練掌握運(yùn)算法則是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線分別與軸交于兩點(diǎn)

1)求點(diǎn)的坐標(biāo),并在網(wǎng)格中用兩點(diǎn)法畫出直線;

2)將直線向上平移6個單位后得到直線,畫出平移后的直線,并直接寫出直線的函數(shù)解析式

3)設(shè)直線軸交于點(diǎn)M,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形按一定規(guī)律排列,觀察并回答:

(1)依照此規(guī)律,第四個圖形共有   個★,第六個圖形共有   個★;

(2)第n個圖形中有★   個;

(3)根據(jù)(2)中的結(jié)論,第幾個圖形中有2020個★?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將正方形OABC放在平面直角坐標(biāo)系xOy中,O是原點(diǎn),若點(diǎn)A的坐標(biāo)為(1),則點(diǎn)C的坐標(biāo)(

A.-1,B.C.D.-21

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,從左邊第一個格子開始向右數(shù),在每個小格子中都填入一個整數(shù),使得其中任意三個相鄰格子中所填整數(shù)之和都相等,若取前3格子中的任意兩個數(shù)記作,且,那么所有的的和可以通過計(jì)算得到,其結(jié)果為_____,若為前格子中的任意兩個數(shù),且,則所有的的和為_____

9

x

6

2

……

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,CA=CB,CDAB,CDOA的延長線交于點(diǎn)D.

(1)求證:CD 是⊙O 的切線;

(2)若∠ACB=120°,OA=2,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(m,m),點(diǎn)B的坐標(biāo)為(n,﹣n),拋物線經(jīng)過A、O、B三點(diǎn),連接OA、OB、AB,線段ABy軸于點(diǎn)C.已知實(shí)數(shù)m、n(mn)分別是方程x2﹣2x﹣3=0的兩根.

(1)求拋物線的解析式;

(2)若點(diǎn)P為線段OB上的一個動點(diǎn)(不與點(diǎn)O、B重合),直線PC與拋物線交于D、E兩點(diǎn)(點(diǎn)Dy軸右側(cè)),連接OD、BD.

①當(dāng)△OPC為等腰三角形時,求點(diǎn)P的坐標(biāo);

②求△BOD 面積的最大值,并寫出此時點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過點(diǎn) A(10)x軸的垂線,交反比例函數(shù) y= (x大于零)的圖象交于點(diǎn)M,已知三角形AOM的面積為3.

(1)k的值;

(2)設(shè)點(diǎn)B的坐標(biāo)為(t,0), 若以AB為一邊的正方形ABCD有頂點(diǎn)在該反比例函數(shù)的圖像上,t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有一塊長方形花園(如圖一所示),長為米,寬為米,現(xiàn)準(zhǔn)備在花園中間修建橫豎兩條小路(圖中空白部分),已知橫向小路的寬是豎向小路的寬的倍,設(shè)豎向小路的寬為米(為正數(shù)).

)兩條小路的面積之和是多少?

)當(dāng)時,求花園剩余部分(陰影部分)的面積;

3)若把豎向小路的寬改為原來的倍、橫向小路的寬改為原來的一半(如圖二所示),設(shè)圖一與圖二中花園剩余部分的面積分別為、,求的差.

查看答案和解析>>

同步練習(xí)冊答案