【題目】閱讀理解:
【問題情境】金老師給“數學小達人”小明和小軍提出這樣一個問題:
如圖1,△ABC中,∠B=2∠C,AD是∠BAC的平分線.求證:AB+BD=AC.
【證明思路】小明的證明思路是:如圖2,在AC上截取AE=AB,連接DE.……
小軍的證明思路是:如圖3,延長CB至點E,使BE=AB,連接AE.可以證得:AE=DE.……
(1)請你從他們的思路中,任意選擇一種思路繼續(xù)完成下一步的證明.
(2)【變式探究】如圖4,金老師把“AD是∠BAC的平分線”改成“AD是BC邊上的高”,其它條件不變,那么AB+BD=AC還成立嗎?若成立,請證明;若不成立,寫出正確結論,并說明理由.
(3)【遷移拓展】如圖5,△ABC中,∠B=2∠C.求證:AC2—AB2=AB×BC.
【答案】
(1)解:小明的證明思路是:在AC上截取AE=AB,連接DE.(如圖2)
∵AD是∠BAC的平分線,∴∠BAD=∠EAD,
又∵AD=AD, ∴△ABD≌△AED,∴BD=DE,∠ABD=∠AED,
又∵∠AED=∠EDC+∠C,∠B=2∠C,
∴∠EDC=∠C,∴ DE=EC, 即AB+BD=AC.
小軍的證明思路是:延長CB至點E,使BE=AB,連接AE.(如圖3)
則∠E=∠BAE,∴∠ABC=2∠E,
∵∠ABC=2∠C,∴∠E=∠C,∴△AEC是等腰三角形.
∵∠ADE=∠DAC+∠C,∠DAE=∠BAD+∠BAE,
又∵AD是∠BAC的平分線, ∴∠BAD=∠DAC,
∴∠ADE=∠DAE,∴△AED是等腰三角形.
∴EA=ED=AC,∴AB+BD=AC.
(2)解:AB+BD=AC不成立.正確結論是:AB+BD=CD.
方法1:如圖4,在CD上截取DE=DB,
∵AD⊥BC, ∴ AD是BE的垂直平分線,
∴AE=AB, ∴∠B=∠AED,
∵∠AED =∠C+∠CAE,
∵∠B=2∠C,∴∠C=∠CAE,
∴ AE=EC, 即AB+BD=CD.
方法2:如圖5,延長DB至點E,使BE=AB,則∠E=∠BAE,
∵∠ABD =∠E+∠BAE =2∠E,
∵∠B=2∠C,∴∠E=∠C,∴△AEC是等腰三角形.
∵AD⊥BC,∴CD=ED, 即AB+BD=CD.
(3)解:如圖6,過點A作AD⊥BC于D.
由勾股定理得:AB2=BD2+AD2, AC2=CD2+AD2,
∴ AC2—AB2=CD2—BD2=(CD+BD)×(CD—BD)=BC×(CD—BD),
∵AB+BD=CD,∴ CD—BD=AB,
∴ AC2—AB2=BC×(CD—BD)=BC×AB,即AC2-AB2+AB×BC.
【解析】(1)根據已知條件和角平分線的性質,得到△ABD≌△AED,根據根據三角形的一個外角等于和它不相鄰的兩個內角的和和∠B=2∠C,得到∠EDC=∠C,根據等角對等邊得到DE=EC, 即AB+BD=AC;(2)根據已知條件由AD⊥BC,得到AD是BE的垂直平分線,根據垂直平分線得到AB+BD=CD;(3)根據勾股定理和兩等式相減,得到AC2-AB2+AB×BC.
科目:初中數學 來源: 題型:
【題目】某班組織班團活動,班委會準備用15元錢全部用來購買筆記本和中性筆兩種獎品,已知筆記本2元/本,中性筆1元/支,且每種獎品至少買1件.
(1)若設購買筆記本x本,中性筆y支,寫出y與x之間的關系式;
(2)有多少種購買方案?請列舉所有可能的結果;
(3)從上述方案中任選一種方案購買,求買到的中性筆與筆記本數量相等的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AE∥BF,AC平分∠BAE,交BF于C.
(1)尺規(guī)作圖:過點B作AC的垂線,交AC于O,交AE于D,(保留作圖痕跡,不寫作法);
(2)求證:AD=BC.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,BE是中線,CG平分∠ACB交BE于點G,F為AB邊上一點,且∠ACF=∠CBG.
(1)求證:CF=BG;
(2)延長CG交AB于點H,判斷點G是否在線段AB的垂直平分線上?并說明理由.
(3)過點A作AD⊥AB交BE的延長線于點D,請證明:CF=2DE.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】完成下列各題:
(1)如圖,已知直線AB與⊙O相切于點C,且AC=BC,求證:OA=OB.
(2)如圖,矩形ABCD的兩條對角線相交于點O,∠AOD=120°,AB=3,求AC的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com