在平面直角坐標(biāo)中,O是坐標(biāo)原點(diǎn),點(diǎn)P是雙曲線y=
k
x
與直線y=kx(k≥1)的交點(diǎn),連接OP,當(dāng)點(diǎn)P的坐標(biāo)為(1,
2
)時(shí),OP的長是
 
;要使OP的值最小時(shí),點(diǎn)P的坐標(biāo)是
 
分析:已知點(diǎn)P的坐標(biāo)為(1,
2
),運(yùn)用勾股定理可直接求出OP的長;如果設(shè)點(diǎn)P的坐標(biāo)為(x,y),那么OP=
x2+y2
,根據(jù)不等式的性質(zhì)可知,當(dāng)x=y時(shí),x2+y2有最小值,即OP有最小值,又k的最小值是1,從而求出點(diǎn)P的坐標(biāo).
解答:解:∵點(diǎn)P的坐標(biāo)為(1,
2
),
∴OP=
12+(
2
)2
=
3

設(shè)點(diǎn)P的坐標(biāo)為(x,y),
則OP=
x2+y2
,
∵x2+y2≥2xy,
∴當(dāng)x=y時(shí),x2+y2有最小值,
又k≥1,即k的最小值是1,
解方程組
y=
1
x
y=x
,得
x1=1
y1=1
x2=-1
y2=-1
,
∴點(diǎn)P的坐標(biāo)是(1,1)或(-1,-1).
故答案為:
3
,(1,1)或(-1,-1).
點(diǎn)評(píng):此題綜合考查了函數(shù)的性質(zhì),勾股定理,不等式等知識(shí)點(diǎn).此題難度稍大,綜合性比較強(qiáng),注意對(duì)各個(gè)知識(shí)點(diǎn)的靈活應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖所示,在平面直角坐標(biāo)中,拋物線的頂點(diǎn)P到軸的距離是4,拋物線與x軸相交于O、M兩點(diǎn),OM=4;矩形ABCD的邊BC在線段的OM上,點(diǎn)A、D在拋物線上.
(1)請寫出P、M兩點(diǎn)坐標(biāo),并求出這條拋物線的解析式;
(2)設(shè)矩形ABCD的周長為l,求l的最大值;
(3)連接OP、PM,則△PMO為等腰三角形,請判斷在拋物線上是否存在點(diǎn)Q(除點(diǎn)M外),使得△OPQ也是等腰三角形,簡要說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在平面直角坐標(biāo)中,點(diǎn)O1(-4,0),半徑為8的⊙O1與x軸交于A、B,過A作直線l與x軸負(fù)方向成60°角,且交y軸于點(diǎn)C,以點(diǎn)O2(13,5)為圓心的圓與x軸切于點(diǎn)D.
(1)求直線l的解析式;
(2)將⊙O2以每秒1個(gè)單位長的速度沿x軸向左平移,當(dāng)⊙O2第一次與⊙O1外切時(shí),求平移的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別是A(-2,3),B(-4,-1),C(2,0),將△ABC平移至△A1B1C1的位置,點(diǎn)A,B,C的對(duì)應(yīng)點(diǎn)分別是A1,B1,C1,若點(diǎn)A1的坐標(biāo)為(3,1),則點(diǎn)C1的坐標(biāo)為
(7,-2)
(7,-2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,點(diǎn)A(2,2),試在x軸上找點(diǎn)P,使△AOP是等腰三角形,那么這樣的三角形有( 。

查看答案和解析>>

同步練習(xí)冊答案