【題目】小明學(xué)習(xí)電學(xué)知識(shí)后,用四個(gè)開關(guān)按鍵(每個(gè)開關(guān)鍵閉合的可能性相等)、一個(gè)電源和一個(gè)燈泡設(shè)計(jì)了一個(gè)電路圖

(1)若小明設(shè)計(jì)的電路圖(四個(gè)開關(guān)按鍵都處于打開狀態(tài))如圖所示,求任意閉合一個(gè)開關(guān)按鍵,燈泡能發(fā)光的概率;

(2)若小明設(shè)計(jì)的電路圖(四個(gè)開關(guān)按鍵都處于打開狀態(tài))如圖所示,求同時(shí)閉合其中的兩個(gè)開關(guān)按鍵,燈泡能發(fā)光的概率.(用列表或樹狀圖法)

【答案】(1);(2)

【解析】整體分析

(1)根據(jù)概率的定義求解;(2)用樹狀圖分析,開關(guān)按鍵k4閉合后,其它三個(gè)開關(guān)只要有一個(gè)閉合,即可發(fā)光.

:(1)一共有四個(gè)開關(guān)按鍵,只有閉合開關(guān)按鍵K2,燈泡才會(huì)發(fā)光,所以P(燈泡發(fā)光)=

(2)用樹狀圖分析如下:

一共有12種不同的情況,其中有6種情況下燈泡能發(fā)光,

所以P(燈泡發(fā)光).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線經(jīng)過矩形的對(duì)角線的中點(diǎn),分別與矩形的兩邊相交于點(diǎn)、.

(1)求證:;

(2),則四邊形______形,并說明理由;

(3)(2)的條件下,若,,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店如果將進(jìn)貨價(jià)為8元的商品按每件10元售出,每天可銷售200件,現(xiàn)在采用提高售價(jià),減少進(jìn)貨量的方法增加利潤(rùn),已知這種商品每漲價(jià)0.5元,其銷量就減少10件.

(1)要使每天獲得利潤(rùn)700元,請(qǐng)你幫忙確定售價(jià);

(2)問售價(jià)定在多少時(shí)能使每天獲得的利潤(rùn)最多?并求出最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】清朝數(shù)學(xué)家梅文鼎的著作《方程論》中有這樣一道題:山田三畝,場(chǎng)地六畝,共折實(shí)田四畝七分;又山田五畝,場(chǎng)地三畝,共折實(shí)田五畝五分,問每畝山田折實(shí)田多少,

每畝場(chǎng)地折實(shí)田多少?

譯文為:假如有山田3畝,場(chǎng)地6畝,其產(chǎn)糧相當(dāng)于實(shí)田4.7畝;又山田5畝,場(chǎng)地3畝,其產(chǎn)糧相當(dāng)于實(shí)田5.5畝,問每畝山田和每畝場(chǎng)地產(chǎn)糧各相當(dāng)于實(shí)田多少畝?請(qǐng)你解答.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下圖,填空:

1)第n個(gè)圖形中有多少個(gè)“ ?

2)第n個(gè)圖形有182個(gè)“ 該圖形中有多少個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某小區(qū)有一塊長(zhǎng)為30m,寬為24m的矩形空地,計(jì)劃在其中修建兩塊相同的矩形綠地,它們的面積之和為480m2,兩塊綠地之間及周邊有寬度相等的人行通道,則人行通道的寬度為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為選拔優(yōu)秀選手參加瑤海區(qū)第八屆德育文化藝術(shù)節(jié)“誦經(jīng)典”比賽活動(dòng),九年級(jí)(1)、(2)班根據(jù)初賽成績(jī),各選出5名選手參加復(fù)賽,兩個(gè)班各選出的5名選手的復(fù)賽成績(jī)?nèi)鐖D所示

1)根據(jù)圖示填寫下表

班級(jí)

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

九(1

85

   

85

九(2

   

80

   

2)結(jié)合兩班復(fù)賽成績(jī)的平均數(shù)和中位數(shù),分析哪個(gè)班級(jí)的復(fù)賽成績(jī)較好;

3)計(jì)算兩班復(fù)賽成績(jī)的方差,并說明哪個(gè)班五名選手的成績(jī)較穩(wěn)定.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將拋物線的對(duì)稱軸繞著點(diǎn)(0,2)順時(shí)針旋轉(zhuǎn)45°后與該拋物線交于兩點(diǎn),點(diǎn)是該拋物線上的一點(diǎn).

(1)求兩點(diǎn)的坐標(biāo)。

(2)如圖①,若點(diǎn)在直線的下方,求點(diǎn)到直線的距離的最大值;

(3)如圖②,若點(diǎn)軸左側(cè),且點(diǎn)是直線上一點(diǎn),當(dāng)以為頂點(diǎn)的三角形與相似時(shí),求所有滿足條件的的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(0,1)、點(diǎn)B(0,1+t)、C(0,1﹣t)(t>0),點(diǎn)P在以D(3,5)為圓心,1為半徑的圓上運(yùn)動(dòng),且始終滿足∠BPC=90°,則t的最小值是(  )

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

同步練習(xí)冊(cè)答案