【題目】【問題探究】
已知:如圖①所示,∠MPN的頂點為P,⊙O的圓心O從頂點P出發(fā),沿著PN方向平移.
(1)如圖②所示,當⊙O分別與射線PM,PN相交于A、B、C、D四個點,連接AC、BD,可以證得△PAC∽△ , 從而可以得到:PAP B=P CP D.
(2)如圖③所示,當⊙O與射線PM相切于點A,與射線PN相交于C、D兩個點.求證:PA2=PCPD.
(3)【簡單應用】
如圖④所示,(2)中條件不變,經(jīng)過點P的另一條射線與⊙O相交于E、F兩點.利用上述(1),(2)兩問的結論,直接寫出線段PA與PE、PF之間的數(shù)量關系;當PA=4 ,EF=2,則PE= .
(4)【拓展延伸】如圖⑤所示,在以O為圓心的兩個同心圓中,A、B是大⊙O上的任意兩點,經(jīng)過A、B 兩點作線段,分別交小⊙O于C、E、D、F四個點.求證:ACAE=BDBF.(友情提醒:可直接運用本題上面所得到的相關結論)
【答案】
(1)△PDB
(2)證明:連接AC、AD,如圖③所示:
∵⊙O與射線PM相切于點A,與射線PN相交于C、D兩個點,
∴∠PAC=∠PDA,
又∵∠P=∠P,
∴△PAC∽△PDA,
∴PA:PD=PC:PA,
∴PA2=PCPD
(3)PA2=PE?PF,6
(4)證明:過A作⊙O的切線AM,M為切點,過B作⊙O的切線BN,N為切點,連接OA、OM、OB、ON,則AM⊥OM,BN⊥ON,如圖⑤所示:
由(3)得:AM2=ACAE,BN2=BDBF.
在Rt△AOM中,AM2=OA2﹣OM2,
在Rt△BON中,BN2=OB2﹣ON2,
又∵OM=ON,OA=OB,
∴AM2=BN2,
∴ACAE=BDBF.
【解析】(1)解:由圓內接四邊形的性質得:∠PAC=∠PDB,
又∵∠P=∠P,
∴△PAC∽△PDB,
∴PA:PD=PC:PB,
∴PAP B=P CP D.
所以答案是:△PDB;(3)解:由(2)得:PA2=PEPF.
∵PA=4 ,EF=2,
∴PEPF=(4 )2=48,
即PE(PE+2)=48,
解得:PE=6,或PE=﹣8(舍去),
∴PE=6,
所以答案是:PA2=PEPF,6;
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,AD=7,其中點E為CD的中點.有一動點P,從點A按A→B→C→E的順序在矩形ABCD的邊上移動,移動到點E停止,在此過程中以點A,P,E三點為頂點的直角三角形的個數(shù)為( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連結AG、CF.
(1)求證:①△ABG≌△AFG; ②BG=GC;
(2)求△FGC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點P(1,﹣4)、Q(m,n)在函數(shù)(x>0)的圖象上,當m>1時,過點P分別作x軸、y軸的垂線,垂足為點A,B;過點Q分別作x軸、y軸的垂線,垂足為點C、D.QD交PA于點E,隨著m的增大,四邊形ACQE的面積( )
A.減小 B.增大 C.先減小后增大 D.先增大后減小
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù)的圖像經(jīng)過點.
(1)求k的值,并判斷點是否在該反比例函數(shù)的圖像上;
(2)該反比例函數(shù)圖像在第______象限,在每個象限內,y隨x的增大而_______.
(3)當時,求y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】要說明(abc)2a2b2c22ab2ac2bc成立,三位同學分別提供了一種思路,請根據(jù)他們的思路寫出推理過程.
(1)小剛說:可以根據(jù)乘方的意義來說明等式成立;
(2)小王說:可以將其轉化為兩數(shù)和的平方來說明等式成立;
(3)小麗說:可以構造圖形,通過計算面積來說明等式成立;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的袋子中裝有若干個除顏色外均相同的小球,小明每次從袋子中摸出一個球,記錄下顏色,然后放回,重復這樣的試驗1000次,記錄結果如下:
實驗次數(shù)n | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 1000 |
摸到紅球 次數(shù)m | 151 | 221 | 289 | 358 | 429 | 497 | 571 | 702 |
摸到紅球 頻率 | 0.75 | 0.74 | 0.72 | 0.72 | 0.72 | 0.71 | a | b |
(1)表格中a=_____;(精確到0.01)
(2)估計從袋子中摸出一個球恰好是紅球的概率約為______;(精確到0.1)
(3)如果袋子中有7個紅球,那么袋子中除了紅球,估計還有幾個其他顏色的球?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com