【題目】某校舉行漢字聽寫比賽,每位學生聽寫漢字39個,比賽結束后隨機抽查部分學生的聽寫結果,以下是根據(jù)抽查結果繪制的統(tǒng)計圖的一部分.

根據(jù)以上信息解決下列問題:

在統(tǒng)計表中,______,______,并補全條形統(tǒng)計圖.

扇形統(tǒng)計圖中“C所對應的圓心角的度數(shù)是______

若該校共有1120名學生,如果聽寫正確的個數(shù)少于24個定為不合格,請你估計這所學校本次比賽聽寫不合格的學生人數(shù).

【答案】(1)30,20,補圖見解析;(2)90°;(3)560人

【解析】

1)根據(jù)B組有15人,所占的百分比是15%即可求得總人數(shù),然后根據(jù)百分比的意義求mn的值;
2)利用360度乘以對應的比例即可求解;
3)利用總人數(shù)1120乘以對應的比例即可求解.

解:總人數(shù)為

組人數(shù),E組人數(shù)

補全條形圖如下:

故答案為:;

扇形統(tǒng)計圖中“C所對應的圓心角的度數(shù)是,

故答案為:;

聽寫正確的個數(shù)少于24的人數(shù)有:人,

(人)

答:這所學校本次比賽聽寫不合格的學生人數(shù)約為560人.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線C1y1axh2+2,直線1y2kxkh+2k0).

1)求證:直線l恒過拋物線C的頂點;

2)若a0h1,當txt+3時,二次函數(shù)y1axh2+2的最小值為2,求t的取值范圍.

3)點P為拋物線的頂點,Q為拋物線與直線l的另一個交點,當1k3時,若線段PQ(不含端點P,Q)上至少存在一個橫坐標為整數(shù)的點,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2+x+6及一次函數(shù)yx+m,將該二次函數(shù)在x軸上方的圖象沿x軸翻折到x軸下方,圖象的其余部分不變,得到一個新圖象(如圖所示),當直線yx+m與這個新圖象有四個交點時,m的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠BAC的內(nèi)角平分線與外角平分線分別交BCBC的延長線于點P、Q

1)求∠PAQ的大小;

2)若點MPQ的中點,求證:PM2CM·BM

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BAC=45°,AB=8要使?jié)M足條件的ABC惟一確定,那么BC的長度x的取值范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】方格紙中每個小正方形的邊長都是單位1,△OAB在平面直角坐標系中的位置如圖所示,解答問題:

1)請按要求對△OAB作變換:以點O為位似中心,位似比為21,將△ABC在位似中心的異側進行放大得到△OAB′.

2)寫出點A′的坐標;

3)求△OAB'的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,為坐標原點,點的坐標為,點的坐標為,點的坐標為

1)求直線的函數(shù)解析式;

2)如圖2,點在線段(不包括,兩點)上,連接軸交于點,連接、的垂直平分線交于點,連接并延長到點,使,作軸于,連結.求證:;

3)在(2)的條件下,當的邊時,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠BACBC于點D,OAB上一點,經(jīng)過點A,D⊙O分別交AB,AC于點E,F(xiàn),連接OFAD于點G.

(1)求證:BC⊙O的切線;

(2)AB=x,AF=y,試用含x,y的代數(shù)式表示線段AD的長;

(3)BE=8,sinB=,求DG的長,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于點A(﹣1,0),B(3,0).下列結論:①2a﹣b=0;(a+c)2<b2;③當﹣1<x<3時,y<0;④當a=1時,將拋物線先向上平移2個單位,再向右平移1個單位,得到拋物線y=(x﹣2)2﹣2.其中正確的是( 。

A. ①③ B. ②③ C. ②④ D. ③④

查看答案和解析>>

同步練習冊答案