【題目】直線與直線垂直相交于,點(diǎn)在射線上運(yùn)動(dòng),點(diǎn)在射線上運(yùn)動(dòng),連接.
(1)如圖1,已知,分別是和角的平分線,
①點(diǎn),在運(yùn)動(dòng)的過(guò)程中,的大小是否發(fā)生變化?若發(fā)生變化,請(qǐng)說(shuō)明理由;若不發(fā)生變化,試求出的大。
②如圖2,將沿直線折疊,若點(diǎn)落在直線上,記作點(diǎn),則_______;如圖3,將沿直線折疊,若點(diǎn)落在直線上,記作點(diǎn),則________.
(2)如圖4,延長(zhǎng)至,已知,的角平分線與的角平分線交其延長(zhǎng)線交于,,在中,如果有一個(gè)角是另一個(gè)角的倍,求的度數(shù).
【答案】(1)∠ACB的大小不會(huì)發(fā)生變化,∠ACB=45°;(2)30,60;(3)60°或72°.
【解析】
(1)①由直線MN與直線PQ垂直相交于O,得到∠AOB=90°,根據(jù)三角形的外角的性質(zhì)得到∠PAB+∠ABM=270°,根據(jù)角平分線的定義得到∠BAC=∠PAB,∠ABC=∠ABM,于是得到結(jié)論;
②圖2中,由于將△ABC沿直線AB折疊,若點(diǎn)C落在直線PQ上,得到∠CAB=∠BAQ,由角平分線的定義得到∠PAC=∠CAB,根據(jù)三角形的內(nèi)角和即可得到結(jié)論;
圖3中,根據(jù)將△ABC沿直線AB折疊,若點(diǎn)C落在直線MN上,得到∠ABC=∠ABN,由于BC平分∠ABM,得到∠ABC=∠MBC,于是得到結(jié)論;
(2)由∠BAO與∠BOQ的角平分線相交于E可知∠EAO=∠BAO,∠EOQ=∠BOQ,進(jìn)而得出∠E的度數(shù),由AE、AF分別是∠BAO和∠OAG的角平分線可知∠EAF=90°,在△AEF中,由一個(gè)角是另一個(gè)角的倍分情況進(jìn)行分類討論即可解答.
(1)①∠ACB的大小不變,
∵直線MN與直線PQ垂直相交于O,
∴∠AOB=90°,
∴∠OAB+∠OBA=90°,
∴∠PAB+∠ABM=270°,
∵AC、BC分別是∠BAP和∠ABM角的平分線,
∴∠BAC=∠PAB,∠ABC=∠ABM,
∴∠BAC+∠ABC=(∠PAB+∠ABM)=135°,
∴∠ACB=45°;
②∵圖2中,將△ABC沿直線AB折疊,若點(diǎn)C落在直線PQ上,
∴∠CAB=∠BAQ,
∵AC平分∠PAB,
∴∠PAC=∠CAB,
∴∠PAC=∠CAB=∠BAO=60°,
∵∠AOB=90°,
∴∠ABO=30°,
∵圖3中,將△ABC沿直線AB折疊,若點(diǎn)C落在直線MN上,
∴∠ABC=∠ABN,
∵BC平分∠ABM,
∴∠ABC=∠MBC,
∴∠MBC=∠ABC=∠ABN,
∴∠ABO=60°,
故答案為:30,60;
(2)∵∠BAO與∠BOQ的角平分線相交于E,
∴∠EAO=∠BAO,∠EOQ=∠BOQ,
∴∠E=∠EOQ-∠EAO=(∠BOQ-∠BAO)=∠ABO,
∵AE、AF分別是∠BAO和∠OAG的角平分線,
∴∠EAF=90°.
在△AEF中,
∵有一個(gè)角是另一個(gè)角的倍,故有:
①∠EAF=∠E,∠E=60°,∠ABO=120°(不合題意,舍去);
②∠EAF=∠F,∠E=30°,∠ABO=60°;
③∠F=∠E,∠E=36°,∠ABO=72°;
④∠E=∠F,∠E=54°,∠ABO=108°(不合題意,舍去);.
∴∠ABO為60°或72°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,AB,AC與⊙O相切于點(diǎn)B,C,∠A=50°,點(diǎn)P是圓上異于B,C的一動(dòng)點(diǎn),則∠BPC的度數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)統(tǒng)計(jì)了每個(gè)營(yíng)業(yè)員在某月的銷售額,繪制了如下的條形統(tǒng)計(jì)圖以及不完整的扇形統(tǒng)計(jì)圖:
解答下列問(wèn)題:
(1)設(shè)營(yíng)業(yè)員的月銷售額為x(單位:萬(wàn)元),商場(chǎng)規(guī)定:當(dāng)x<15時(shí)為不稱職,當(dāng)15≤x<20時(shí),為基本稱職,當(dāng)20≤x<25為稱職,當(dāng)x≥25時(shí)為優(yōu)秀.則扇形統(tǒng)計(jì)圖中的a=________,b=________.
(2)所有營(yíng)業(yè)員月銷售額的中位數(shù)和眾數(shù)分別是多少?
(3)為了調(diào)動(dòng)營(yíng)業(yè)員的積極性,決定制定一個(gè)月銷售額獎(jiǎng)勵(lì)標(biāo)準(zhǔn),凡到達(dá)或超過(guò)這個(gè)標(biāo)準(zhǔn)的營(yíng)業(yè)員將受到獎(jiǎng)勵(lì).如果要使得營(yíng)業(yè)員的半數(shù)左右能獲獎(jiǎng),獎(jiǎng)勵(lì)標(biāo)準(zhǔn)應(yīng)定為多少萬(wàn)元?并簡(jiǎn)述其理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A(-1,0),B(3,0)兩點(diǎn).
(1)求該拋物線的解析式;
(2)求該拋物線的對(duì)稱軸以及頂點(diǎn)坐標(biāo);
(3)設(shè)(1)中的拋物線上有一個(gè)動(dòng)點(diǎn)P,當(dāng)點(diǎn)P在該拋物線上滑動(dòng)到什么位置時(shí),滿足S△PAB=8,并求出此時(shí)P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,點(diǎn)O在線段AB上,AB=6,OC為射線,且∠BOC=45°.動(dòng)P以每秒1個(gè)單位長(zhǎng)度的速度從點(diǎn)O出發(fā),沿射線OC做勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t 秒.
(1)如圖1,若AO=2.
①當(dāng) t=6秒時(shí),則OP= ,S△ABP= ;
②當(dāng)△ABP與△PBO相似時(shí),求t的值;
(2)如圖2,若點(diǎn)O為線段AB的中點(diǎn),當(dāng)AP=AB時(shí),過(guò)點(diǎn)A作AQ∥BP,并使得∠QOP=∠B,求AQBP的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一副三角板中的兩塊直角三角尺的直角頂點(diǎn) O 按如圖方式疊放在一起.
( 1 ) 如圖 1 , 若∠ BOD=35° , 則∠ AOC= ; 若∠AOC=135°, 則∠BOD= ;
(2)如圖2,若∠AOC=140°,則∠BOD= ;
(3)猜想∠AOC 與∠BOD 的大小關(guān)系,并結(jié)合圖1說(shuō)明理由.
(4)三角尺 AOB 不動(dòng),將三角尺 COD 的 OD 邊與 OA 邊重合,然后繞點(diǎn) O 按順時(shí)針或逆時(shí)針?lè)较蛉我廪D(zhuǎn)動(dòng)一個(gè)角度,當(dāng)∠A OD(0°<∠AOD<90°)等于多少度時(shí),這兩塊三角尺各有一條邊互相垂直,直接寫出∠AOD 角度所有可能的值,不用說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線交軸于點(diǎn),交軸于點(diǎn), 為的中點(diǎn), 為射線上一點(diǎn),連,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)得線段,則的最小值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在 ABCD 中,AE、BF 分別平分∠DAB 和∠ABC,交 CD 于點(diǎn) E、F,AE、BF 相交于點(diǎn) M.
(1)求證:AE⊥BF;
(2)判斷線段 DF 與 CE 的大小關(guān)系,并予以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD是平行四邊形,點(diǎn)A、B在x軸上,點(diǎn)C、D在第二象限,點(diǎn)M是BC中點(diǎn).已知AB=6,AD=8,∠DAB=60°,點(diǎn)B的坐標(biāo)為(-6,0).
(1)求點(diǎn)D和點(diǎn)M的坐標(biāo);
(2)如圖①,將□ABCD沿著x軸向右平移a個(gè)單位長(zhǎng)度,點(diǎn)D的對(duì)應(yīng)點(diǎn)和點(diǎn)M的對(duì)應(yīng)點(diǎn)恰好在反比例函數(shù)(x>0)的圖像上,請(qǐng)求出a的值以及這個(gè)反比例函數(shù)的表達(dá)式;
(3)如圖②,在(2)的條件下,過(guò)點(diǎn)M,作直線l,點(diǎn)P是直線l上的動(dòng)點(diǎn),點(diǎn)Q是平面內(nèi)任意一點(diǎn),若以,P、Q為頂點(diǎn)的四邊形是矩形,請(qǐng)直接寫出所有滿足條件的點(diǎn)Q的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com