【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)的圖象交于A(-4,n),B(2,-4)兩點.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求直線AB與x軸的交點C的坐標及△AOB的面積;
(3)根據(jù)圖象直接寫出關(guān)于x的方程的解及不等式的解集.
【答案】(1) ,y=-x-2;(2)C(-2,0),AOB=6;(3)x=2 或 x=-4 ;x>2 或-4<x<0.
【解析】
(1)將點B(2,-4)代入可得m的值,求得反比例函數(shù)的解析式;根據(jù)反比例函數(shù)解析式求得點B坐標,再由A、B兩點的坐標可得一次函數(shù)的解析式;(2)令y=0代入一次函數(shù)解析式,即可確定C的坐標及OC的長度; S△AOB就是以OC為底,A,B兩點縱坐標為高的兩個三角形面積之和;(3)方程的解即為兩函數(shù)圖像交點的橫坐標,不等式的解集,即為一次函數(shù)圖像在反比例函數(shù)圖像下方所對應的自變量的取值范圍。
解:(1)把B(2,-4)代入,得:m=-8,
∴反比例函數(shù)的解析式為;
把A(-4,n)代入,得:n=2,
∴A(-4,2),
把A(-4,2)、B(2,-4)代入y=kx+b,
得: 解得:
∴一次函數(shù)的解析式為y=-x-2;
(2)在y=-x-2中,令y=0,則x=-5,所以C的坐標為(-2,0),|OC|=2
所以:S△AOB= S△AOC+ S△COB=|OC|×|2|+|OC|×|4|=×2×2+×2×4=6
(3)由y=-x-2和的交點坐標為A(-4,2)、B(2,-4)
則:如圖:方程的解為x=2或者x=-4;
不等式的解集為;x>2 或-4<x<0.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知矩形OABC的頂點B(6,8),動點M,N同時從O點出發(fā),點M沿射線OA方向以每秒1個單位的速度運動,點N沿線段OB方向以每秒0.6個單位的速度運動,當點N到達點B時,點M,N同時停止運動,連接MN,設運動時間為t(秒).
(1)求證△ONM~△OAB;
(2)當點M是運動到點時,若雙曲線的圖象恰好過點N,試求k的值;
(3)△MNB與△OAB能否相似?若能試求出所有t的值,若不能請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】房山某中學改革學生的學習模式,變“老師要學生學習”為“學生自主學習”,培養(yǎng)了學生自主學習的能力.小華與小明同學就“最喜歡哪種學習方式”隨機調(diào)查了他們周圍的一些同學,根據(jù)收集到的數(shù)據(jù)繪制了以下的兩個統(tǒng)計圖.請根據(jù)下面兩個不完整的統(tǒng)計圖回答以下問題:
(1)這次抽樣調(diào)查中,共調(diào)查了 名學生;
(2)補全兩幅統(tǒng)計圖;
(3)根據(jù)抽樣調(diào)查的結(jié)果,估算該校1000名學生中大約有多少人選擇“小組合作學習”?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們規(guī)定:相等的實數(shù)看作同一個實數(shù).有下列六種說法:
①數(shù)軸上有無數(shù)多個表示無理數(shù)的點;
②帶根號的數(shù)不一定是無理數(shù);
③每個有理數(shù)都可以用數(shù)軸上唯一的點來表示;
④數(shù)軸上每一個點都表示唯一一個實數(shù);
⑤沒有最大的負實數(shù),但有最小的正實數(shù);
⑥沒有最大的正整數(shù),但有最小的正整數(shù).
其中說法錯誤的有_____(注:填寫出所有錯誤說法的編號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC=,cosC=.
(1)動手操作:利用尺規(guī)作以AC為直徑的⊙O,并標出⊙O與AB的交點D,與BC的交點E(保留作圖痕跡,不寫作法);
(2)綜合應用:在你所作的圖中,
①求證:弧DE=弧CE ;②求點D到BC的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列短文,并回答下列問題:我們把相似的概念推廣到空間:如果兩個幾何體大小不一定相等,但形狀完全相同,我們就把它們叫作相似體.
如圖,甲、乙是兩個不同的正方體,正方體都是相似體,它們的一切對應線段之比都等于相似比( a ∶ b ),設S 甲 ,S 乙 分別表示這兩個正方體的表面積,則
.又設V 甲 ,V 乙 分別表示這兩個正方體的體積,則.
(1)下列幾何體中,一定屬于相似體的是(___)
A.兩個球體 B.兩個圓錐體
C.兩個圓柱體 D.兩個長方體
(2)請歸納出相似體的三個主要性質(zhì):①相似體的一切對應線段(或弧)的比等于__________;②相似體的表面積的比等于__________;③相似體的體積比等于__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在正方形AMFN中,以AM為BC邊上的高作等邊三角形ABC,將AB繞點A逆時針旋轉(zhuǎn)90°至點D,D點恰好落在NF上,連接BD,AC與BD交于點E,連接CD.
(1)如圖1,求證:△AMC≌△AND;
(2)如圖1,若DF=,求AE的長;
(3)如圖2,將△CDF繞點D順時針旋轉(zhuǎn)(),點C,F的對應點分別為、.連接、,點G是的中點,連接AG.試探索是否為定值,若是定值,則求出該值;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在電線桿上的C處引拉線CE、CF固定電線桿,拉線CE和地面所成的角
∠CED=60°,在離電線桿6米的B處安置測角儀AB,在A處測得電線桿上C處的仰角為30°,已知測角儀高AB為1.5米,求拉線CE的長 (結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.414,≈1.732).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分線.以O為圓心,OC為半徑作⊙O.
(1)求證:AB是⊙O的切線.
(2)已知AO交⊙O于點E,延長AO交⊙O于點D,tanD=,求的值.
(3)在(2)的條件下,設⊙O的半徑為3,求AB的長.
【答案】(1)證明見解析(2) (3)
【解析】試題分析:(1)過O作OF⊥AB于F,由角平分線上的點到角兩邊的距離相等即可得證;(2)連接CE,證明△ACE∽△ADC可得= tanD=;(3)先由勾股定理求得AE的長,再證明△B0F∽△BAC,得,設BO="y" ,BF=z,列二元一次方程組即可解決問題.
試題解析:(1)證明:作OF⊥AB于F
∵AO是∠BAC的角平分線,∠ACB=90
∴OC=OF
∴AB是⊙O的切線
(2)連接CE
∵AO是∠BAC的角平分線,
∴∠CAE=∠CAD
∵∠ACE所對的弧與∠CDE所對的弧是同弧
∴∠ACE=∠CDE
∴△ACE∽△ADC
∴= tanD=
(3)先在△ACO中,設AE=x,
由勾股定理得
(x+3)="(2x)" +3 ,解得x="2,"
∵∠BFO=90°=∠ACO
易證Rt△B0F∽Rt△BAC
得,
設BO=y BF=z
即4z=9+3y,4y=12+3z
解得z=y=
∴AB=+4=
考點:圓的綜合題.
【題型】解答題
【結(jié)束】
22
【題目】已知:二次函數(shù)的圖象與x軸交于A、B兩點,與y軸交于點C,其中點B在x軸的正半軸上,點C在y軸的正半軸上,線段OB、OC的長(OB<OC)是方程x2-10x+16=0的兩個根,且A點坐標為(-6,0).
(1)求此二次函數(shù)的表達式;
(2)若點E是線段AB上的一個動點(與點A、點B不重合),過點E作EF∥AC交BC于點F,連接CE,設AE的長為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com