【題目】如圖1,已知拋物線y=﹣x2+bx+c交y軸于點A(0,4),交x軸于點B(4,0),點P是拋物線上一動點,試過點P作x軸的垂線1,再過點A作1的垂線,垂足為Q,連接AP.
(1)求拋物線的函數(shù)表達式和點C的坐標;
(2)若△AQP∽△AOC,求點P的橫坐標;
(3)如圖2,當點P位于拋物線的對稱軸的右側時,若將△APQ沿AP對折,點Q的對應點為點Q′,請直接寫出當點Q′落在坐標軸上時點P的坐標.
【答案】(1)y=﹣x2+3x+4;(﹣1,0);(2)P的橫坐標為或.(3)點P的坐標為(4,0)或(5,﹣6)或(2,6).
【解析】
(1)利用待定系數(shù)法求拋物線解析式,然后利用拋物線解析式得到一元二次方程,通過解一元二次方程得到C點坐標;
(2)利用△AQP∽△AOC得到AQ=4PQ,設P(m,﹣m2+3m+4),所以m=4|4﹣(﹣m2+3m+4|,然后解方程4(m2﹣3m)=m和方程4(m2﹣3m)=﹣m得P點坐標;
(3)設P(m,﹣m2+3m+4)(m>),當點Q′落在x軸上,延長QP交x軸于H,如圖2,則PQ=m2﹣3m,證明Rt△AOQ′∽Rt△Q′HP,利用相似比得到Q′B=4m﹣12,則OQ′=12﹣3m,在Rt△AOQ′中,利用勾股定理得到方程42+(12﹣3m)2=m2,然后解方程求出m得到此時P點坐標;當點Q′落在y軸上,易得點A、Q′、P、Q所組成的四邊形為正方形,利用PQ=PQ′得到|m2﹣3m|=m,然后解方程m2﹣3m=m和方程m2﹣3m=﹣m得此時P點坐標.
解:(1)把A(0,4),B(4,0)分別代入y=﹣x2+bx+c得,解得,
∴拋物線解析式為y=﹣x2+3x+4,
當y=0時,﹣x2+3x+4=0,解得x1=﹣1,x2=4,
∴C(﹣1,0);
故答案為y=﹣x2+3x+4;(﹣1,0);
(2)∵△AQP∽△AOC,
∴,
∴,即AQ=4PQ,
設P(m,﹣m2+3m+4),
∴m=4|4﹣(﹣m2+3m+4|,即4|m2﹣3m|=m,
解方程4(m2﹣3m)=m得m1=0(舍去),m2=,此時P點橫坐標為;
解方程4(m2﹣3m)=﹣m得m1=0(舍去),m2=,此時P點坐標為;
綜上所述,點P的坐標為(,)或(,);
(3)設,
當點Q′落在x軸上,延長QP交x軸于H,如圖2,
則PQ=4﹣(﹣m2+3m+4)=m2﹣3m,
∵△APQ沿AP對折,點Q的對應點為點Q',
∴∠AQ′P=∠AQP=90°,AQ′=AQ=m,PQ′=PQ=m2﹣3m,
∵∠AQ′O=∠Q′PH,
∴Rt△AOQ′∽Rt△Q′HP,
∴,即,解得Q′H=4m﹣12,
∴OQ′=m﹣(4m﹣12)=12﹣3m,
在Rt△AOQ′中,42+(12﹣3m)2=m2,
整理得m2﹣9m+20=0,解得m1=4,m2=5,此時P點坐標為(4,0)或(5,﹣6);
當點Q′落在y軸上,則點A、Q′、P、Q所組成的四邊形為正方形,
∴PQ=AQ′,
即|m2﹣3m|=m,
解方程m2﹣3m=m得m1=0(舍去),m2=4,此時P點坐標為(4,0);
解方程m2﹣3m=﹣m得m1=0(舍去),m2=2,此時P點坐標為(2,6),
綜上所述,點P的坐標為(4,0)或(5,﹣6)或(2,6)
科目:初中數(shù)學 來源: 題型:
【題目】某飾品店老板去批發(fā)市場購買新款手鏈,第一次購手鏈共用1000元,將該手鏈以每條定價28元銷售,并很快售完,所得利潤率高于30%.由于該手鏈深得年輕人喜愛,十分暢銷,第二次去購進手鏈時,每條的批發(fā)價已比第一次高5元,共用去了1500元,所購數(shù)量比第一次多10條.當這批手鏈以每條定價32元售出80%時,出現(xiàn)滯銷,便以5折價格售完剩余的手鏈.現(xiàn)假設第一次購進手鏈的批發(fā)價為x元/條.
(1)用含x的代數(shù)式表示:第一次購進手鏈的數(shù)量為 條;
(2)求x的值;
(3)不考慮其他因素情況下,試問該老板第二次售手鏈是賠錢了,還是賺錢了?若賠錢,賠多少?若賺錢,賺多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于四個數(shù)“,,,”及四種運算“,,,”,列算式解答:
(1)求這四個數(shù)的和;
(2)在這四個數(shù)中選出兩個數(shù),按要求進行下列計算,使得:
①兩數(shù)差的結果最小;
②兩數(shù)積的結果最大;
(3)在這四個數(shù)中選出三個數(shù),在四種運算中選出兩種,組成一個算式,使運算結果等于沒選的那個數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】新冠肺炎疫情發(fā)生后,為支援疫情防控,某企業(yè)研發(fā)14條口罩生產線,生產普通防護口罩和普通N95口罩,現(xiàn)日總產量達170萬只.已知每條生產線可日產普通防護口罩15萬只或普通N95口罩5萬只.
(1)將170萬用科學記數(shù)法表示為 ;
(2)這14條生產線中,生產普通防護口罩和普通N95口罩的生產線分別有多少條?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了了解同學們每月零花錢的數(shù)額,校園小記者隨機調查了本校部分同學,根據(jù)調查結果,繪制了如下尚不完整的統(tǒng)計圖表:
組別 | A | B | C | D | E |
分組(元) | 0≤x<30 | 30≤x<60 | 60≤x<90 | 90≤x<120 | 120≤x<150 |
頻數(shù) | 4 | a | 20 | 8 | 2 |
請根據(jù)以上圖標,解答下列問題:
(1)填空:這次調查的樣本容量是 ,a= ,m= ;
(2)補全頻數(shù)分布直方圖;
(3)求扇形統(tǒng)計圖中扇形B的圓心角度數(shù);
(4)該校共有1000人,請估計每月零花錢的數(shù)額x在30≤x<90范圍的人數(shù);
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,按以下步驟作圖:
①分別以點C和點D為圓心,大于的同樣的長為半徑作弧,兩弧交于M,N兩點;
②作直線MN,交CD于點E,連接BE.
若直線MN恰好經過點A,則下列說法錯誤的是( )
A.ABC60°
B.
C.若AB4,則BE
D.tanCBE
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,為直徑,過點的直線與相交于點,是弦延長線上一點,,的平分線與分別相交于點,,是的中點,過點作,與,的延長線分別交于點,.
(1)求證:是的切線;
(2)若,.
①求的半徑;
②連接,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為向明中學提供午餐的某送餐公司計劃每月最后一天推出學生“驚喜套餐”,現(xiàn)做出幾款套餐后打算每班邀請一位學生代表來品嘗.初三(6)班有44人(學號從1~44號),班長設計了一個推選本班代表的辦法:從一副撲克牌中選取了分別標有數(shù)字1、2、3、4的四張牌.先抽取一張牌記下數(shù)字后,放回洗勻;再抽取一張牌記下數(shù)字,兩個數(shù)字依次組成學生代表的學號.比如第一張抽到1,第二張抽到4,就是學號為14的這個同學作為本班代表.
(1)如果小林的學號為23,請用列表法或畫出樹狀圖的方法,求出他被抽到的概率;
(2)對初三(6)班的每位同學來說,班長設計的辦法是否公平?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某學校旗桿AB旁邊有一個半側的時鐘模型,時鐘的9點和3點的刻度線剛好和地面重合,半圓的半徑2m,旗桿的底端A到鐘面9點刻度C的距離為11m,一天小明觀察到陽光下旗桿頂端B的影子剛好投到時鐘的11點的刻度上,同時測得1米長的標桿的影長1.2m.求旗桿AB的高度.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com