如圖,直線與y軸交于A點(diǎn),與反比例函數(shù)(x>0)的圖象交于點(diǎn)M,過(guò)M作MH⊥x軸于點(diǎn)H,且tan∠AHO=.
(1)求k的值;
(2)設(shè)點(diǎn)N(1,a)是反比例函數(shù)(x>0)圖像上的點(diǎn),
在y軸上是否存在點(diǎn)P,使得PM+PN最小,若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
由y=x+1可得A(0,1),即OA=1
∵tan∠AHO=,∴OH=2
∵MH⊥x軸,∴點(diǎn)M的橫坐標(biāo)為2.
∵點(diǎn)M在直線y=x+1上,
∴點(diǎn)M的縱坐標(biāo)為3.即M(2,3)
∵點(diǎn)M在上,∴k=2×3=6.
(2)∵點(diǎn)N(1,a)在反比例函數(shù)的圖像上,
∴a=6.即點(diǎn)N的坐標(biāo)為(1,6)
過(guò)N作N關(guān)于y軸的對(duì)稱點(diǎn)N1,連接MN1,交y軸于P(如圖)
此時(shí)PM+PN最小.
∵N與N1關(guān)于y軸的對(duì)稱,N點(diǎn)坐標(biāo)為(1,6),
∴N1的坐標(biāo)為(-1,6)
設(shè)直線MN1的解析式為y=kx+b.
把M,N1 的坐標(biāo)得
解得
∴直線MN的解析式為.
令x=0,得y=5.
∴P點(diǎn)坐標(biāo)為(0,5)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
反比例函數(shù)y= (k為常數(shù),k≠0)的圖象是雙曲線.當(dāng)k>0時(shí),雙曲線兩個(gè)分支分別在
一、三象限,在每一個(gè)象限內(nèi),y隨x的增大而減。ê(jiǎn)稱增減性);反比例函數(shù)的圖象關(guān)于
原點(diǎn)對(duì)稱(簡(jiǎn)稱對(duì)稱性).
這些我們熟悉的性質(zhì),可以通過(guò)說(shuō)理得到嗎?
【嘗試說(shuō)理】
我們首先對(duì)反比例函數(shù)y=(k>0)的增減性來(lái)進(jìn)行說(shuō)理.
如圖,當(dāng)x>0時(shí).
在函數(shù)圖象上任意取兩點(diǎn)A、B,設(shè)A(x1,),B(x2,),
且0<x1< x2.
下面只需要比較和的大。
—= .
∵0<x1< x2,∴x1-x2<0,x1 x2>0,且 k>0.
∴<0.即.
這說(shuō)明:x1< x2時(shí),.也就是:自變量值增大了,對(duì)應(yīng)的函數(shù)值反而變小了.
即:當(dāng)x>0時(shí),y隨x的增大而減。
同理,當(dāng)x<0時(shí),y隨x的增大而減小.
(1)試說(shuō)明:反比例函數(shù)y= (k>0)的圖象關(guān)于原點(diǎn)對(duì)稱.
【運(yùn)用推廣】
(2)分別寫(xiě)出二次函數(shù)y=ax2 (a>0,a為常數(shù))的對(duì)稱性和增減性,并進(jìn)行說(shuō)理.
對(duì)稱性: ;
增減性: .
說(shuō)理:
(3)對(duì)于二次函數(shù)y=ax2+bx+c (a>0,a,b,c為常數(shù)),請(qǐng)你從增減性的角度,簡(jiǎn)要解釋為何當(dāng)x=— 時(shí)函數(shù)取得最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,梯形中,AD∥BC,,AB=AD=6,BC=9,以為圓心在梯形內(nèi)畫(huà)出一個(gè)最大的扇形(圖中陰影部分)的面積是 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
一個(gè)不透明的口袋里裝有紅、黑、綠三種顏色的乒乓球(除顏色外其余都相同),其中紅球有2個(gè),黑球有1個(gè),綠球有3個(gè),第一次任意摸出一個(gè)球(不放回),第二次再摸出一個(gè)球,則兩次摸到的都是紅球的概率為
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知一次函數(shù)與反比例函數(shù)中,x與y的對(duì)應(yīng)值如下表:
x | -3 | -2 | -1 | 1 | 2 | 3 |
| -3 |
| 0 | 3 |
| 6 |
| -1 |
| -3 | 3 |
| 1 |
則不等式>的解為 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
根據(jù)下列表格中的對(duì)應(yīng)值,判斷方程ax2+bx+c=0(a≠0,a,b,c為常數(shù))的根的個(gè)數(shù)是( 。
A.0 B.1 C.2 D.1或2
x | 6.17 | 6.18 | 6.19 | 6.20 |
y=ax2+bx+c | 0.02 | -0.01 | 0.02 | 0.04 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
同學(xué)們我們知道,直線是恒過(guò)定點(diǎn)(0,0)的一條直線,那么你能發(fā)現(xiàn)直線
+k經(jīng)過(guò)的定點(diǎn)為 ,用類比的思想和數(shù)形結(jié)合的方法接著完成下列兩題:(1)求證:無(wú)論a為何值,拋物線.
(2)是否存在實(shí)數(shù)a,使二次函數(shù)在范圍的最值是4?若存在,求a的范圍,若不存在,請(qǐng)說(shuō)明理由?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com