【題目】如圖,已知拋物線經(jīng)過點和點,與軸交于另一點.
(1)求拋物線的解析式;
(2)若點是拋物線上的動點,點是拋物線對稱軸上的動點,是否存在這樣的點,使以點,,,為頂點的四邊形是平行四邊形?若存在,求出點的坐標(biāo);若不存在,請說明理由.
【答案】(1)拋物線的解析式為y=x2+2x-3;(2)存在,P點坐標(biāo)為,,.
【解析】
(1)將A(1,0),B(0,-3)代入,利用待定系數(shù)法可求其解析式;
(2)先分別計算函數(shù)對稱軸求出Q點橫坐標(biāo),根據(jù)對稱軸和A點求出C點坐標(biāo),根據(jù)以點,,,為頂點的平行四邊形以AC為邊和以點,,,為頂點的平行四邊形以AC為對角線分情況討論.
解:(1)把A(1,0),B(0,-3)代入,
得 解得
∴拋物線的解析式為y=x2+2x-3;
(2)對于y=x2+2x-3,
∵,A(1,0)
∴C點坐標(biāo)為(-3,0),AC=4,Q點的橫坐標(biāo)為-1.
如下圖所示:
若以點,,,為頂點的平行四邊形以AC為邊,則PQ=AC=4.
①當(dāng)P點的橫坐標(biāo)為時,,即
②當(dāng)P點的橫坐標(biāo)為時,,即 ;
若以點,,,為頂點的平行四邊形以AC為對角線,則設(shè)的橫坐標(biāo)為x3,則有,解得,,即
故存在,P點坐標(biāo)為,,.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC是邊長為4的等邊三角形,點O在邊AB上,⊙O過點B且
分別與邊AB,BC相交于點D,E,EF⊥AC,垂足為F.
(1)求證:直線EF是⊙O的切線;
(2)當(dāng)直線DF與⊙O相切時,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線經(jīng)過A(﹣4,0)、B(0,﹣4)、C(2,0)三點,若點M為第三象限內(nèi)拋物線上一動點,△AMB的面積為S,則S的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了推進球類運動的發(fā)展,某校組織校內(nèi)球類運動會,分籃球、足球、排球、羽毛球、乒乓球五項,要求每位學(xué)生必須參加一項并且只能參加一項,某班有一名學(xué)生根據(jù)自己了解的班內(nèi)情況繪制了如圖所示的完整統(tǒng)計表和扇形統(tǒng)計圖.
請根據(jù)圖表中提供的信息,解答下列問題:
(1)圖表中 , ;
(2)該班參加乒乓球活動的4位同學(xué)中,有3位男同學(xué)(分別用,,表示)和1位女同學(xué)(用表示),現(xiàn)準(zhǔn)備從中選出兩名同學(xué)參加比賽,用樹狀圖或列表法求出恰好選出一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù),函數(shù)與自變量的部分對應(yīng)值如下表:
… | —4 | —3 | —2 | —1 | 0 | … | |
… | 3 | —2 | —5 | —6 | —5 | … |
則下列判斷中正確的是( )
A. 拋物線開口向下 B. 拋物線與軸交于正半軸
C. 方程的正根在1與2之間 D. 當(dāng)時的函數(shù)值比時的函數(shù)值大
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD是⊙O的切線,點C在直徑AB的延長線上.
(1)求證:∠CAD=∠BDC;
(2)若BD=AD,AC=3,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的平面直角坐標(biāo)系中,△OA1B1是邊長為2的等邊三角形,作△B2A2B1與△OA1B1關(guān)于點B1成中心對稱,再作△B2A3B3與△B2A2B1關(guān)于點B2成中心對稱,如此作下去,則△B2nA2n+1B2n+1(n是正整數(shù))的頂點A2n+1的坐標(biāo)是( )
A. (4n﹣1,)B. (2n﹣1,)C. (4n+1,)D. (2n+1,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一圓弧形橋拱的圓心為,拱橋的水面跨度米,橋拱到水面的最大高度為米.求:
橋拱的半徑;
現(xiàn)水面上漲后水面跨度為米,求水面上漲的高度為________米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某新型高科技商品,每件的售價比進價多6元,5件的進價相當(dāng)于4件的售價,每天可售出200件,經(jīng)市場調(diào)查發(fā)現(xiàn),如果每件商品漲價1元,每天就會少賣5件.
(1)該商品的售價和進價分別是多少元?
(2)設(shè)每天的銷售利潤為w元,每件商品漲價x元,則當(dāng)售價為多少元時,該商品每天的銷售利潤最大,最大利潤為多少元?
(3)為增加銷售利潤,營銷部推出了以下兩種銷售方案:方案一:每件商品漲價不超過8元;方案二:每件商品的利潤至少為24元,請比較哪種方案的銷售利潤更高,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com