【題目】如圖1所示,拋物線軸交于點(diǎn)兩點(diǎn),與軸交于點(diǎn),直線經(jīng)過點(diǎn),與拋物線另一個(gè)交點(diǎn)為,點(diǎn)是拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)作軸于點(diǎn),交直線于點(diǎn)

1)求拋物線的解析式

2)當(dāng)點(diǎn)在直線上方,且是以為腰的等腰三角形時(shí),求的坐標(biāo)

3)如圖2所示,若點(diǎn)為對(duì)稱軸右側(cè)拋物線上一點(diǎn),連接,以為直角頂點(diǎn),線段為較長(zhǎng)直角邊,構(gòu)造兩直角邊比為,是否存在點(diǎn),使點(diǎn)恰好落在直線上?若存在,請(qǐng)直接寫出相應(yīng)點(diǎn)的橫坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】1;(2P ;(3)存在,2

【解析】

1)利用待定系數(shù)法求二次函數(shù)的解析式;

2)先把C點(diǎn)代入直線CD中求出m的值,表示P(m,-m2+2m+3)、E(m,m+3),當(dāng)△CPE是以CE為腰的等腰三角形時(shí),然后分分兩種情況:當(dāng)CE=CP時(shí),當(dāng)CE=PE時(shí);

3)先根據(jù)點(diǎn)P在拋物線上,G在直線y=x上設(shè)P(m-m2+2m+3),G(aa),

如圖3,作輔助線,構(gòu)建兩個(gè)相似三角形,證明△PHG∽△BNP,則,由兩直角邊比為12列方程組解出橫坐標(biāo)m;如圖4,同理列方程組解出m的值.

解:(1)把點(diǎn)的坐標(biāo)代入拋物線中,

得:

解得,

所以拋物線的解析式為

2)把代入,得,

所以直線的解析式為:,

設(shè),

當(dāng)時(shí),作,如圖2

,

,

,

當(dāng)時(shí),;

當(dāng)時(shí), ,

勾股定理得,

解得(舍去),,

當(dāng)時(shí)

綜上所述當(dāng)三角形是以為腰的等腰三角形時(shí),點(diǎn)P的坐標(biāo)為

3)點(diǎn)P的橫坐標(biāo)為2

設(shè)P(m,-m2+2m+3),G(a,a)

如圖3,

BBN∥y軸,過PPH∥x軸,交于N,過GGH⊥PN,垂足為H,則∠PHG=∠BNP=90°,

∴∠NBP+∠BPN=90°,

∵∠BPG=90°,

∴∠BPN+∠NPG=90°,

∴∠NBP=∠NPG,

∴△PHG∽△BNP,

,

=2,

=2,

=2,

,

解得:m1=-3(舍去),m2=2;

如圖4,

PNH∥x軸,過GGN⊥NH,過BBH⊥NH,垂足分別為N、H

同理得:△PNG∽△BHP,

,

,

解得:m1=(舍去),m2=,

綜上所述,相應(yīng)點(diǎn)P的橫坐標(biāo)為2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,,是等腰直角三角形且,把繞點(diǎn)B順時(shí)針旋轉(zhuǎn),得到,把繞點(diǎn)C順時(shí)針旋轉(zhuǎn),得到,依此類推,得到的等腰直角三角形的直角頂點(diǎn)的坐標(biāo)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,對(duì)于某點(diǎn)不是原點(diǎn)),稱以點(diǎn)為圓心,長(zhǎng)為半徑的圓為點(diǎn)的半長(zhǎng)圓;對(duì)于點(diǎn),若將點(diǎn)的半長(zhǎng)圓繞原點(diǎn)旋轉(zhuǎn),能夠使得點(diǎn)位于點(diǎn)的半長(zhǎng)圓內(nèi)部或圓上,則稱點(diǎn)能被點(diǎn)半長(zhǎng)捕獲(或點(diǎn)能半長(zhǎng)捕獲點(diǎn)).

1)如圖,在平面直角坐標(biāo)系中,點(diǎn),則點(diǎn)的半長(zhǎng)圓的面積為__________;下列各點(diǎn)、、,能被點(diǎn)半長(zhǎng)捕獲的點(diǎn)有__________;

2)已知點(diǎn),,,①如圖,點(diǎn),當(dāng)時(shí),線段上的所有點(diǎn)均可以被點(diǎn)半長(zhǎng)捕獲,求的取值范圍;②若對(duì)于平面上的任意點(diǎn)(原點(diǎn)除外)都不能半長(zhǎng)捕獲線段上的所有點(diǎn),直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l1:y=﹣x與反比例函數(shù)y=的圖象交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),已知A點(diǎn)的縱坐標(biāo)是2:

(1)求反比例函數(shù)的表達(dá)式;

(2)將直線l1:y=﹣x向上平移后的直線l2與反比例函數(shù)y=在第二象限內(nèi)交于點(diǎn)C,如果△ABC的面積為30,求平移后的直線l2的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校開展“書香校園”活動(dòng)以來,受到同學(xué)們的廣泛關(guān)注,學(xué)校為了解全校學(xué)生課外閱讀的情況,隨機(jī)調(diào)查了部分學(xué)生在一周內(nèi)借閱圖書的次數(shù),并制成如圖不完整的統(tǒng)計(jì)表

學(xué)生借閱圖書的次數(shù)

借閱圖書的次數(shù)

0

1

2

3

4次及以上

人數(shù)

7

13

a

10

3

學(xué)生借閱圖書的次數(shù)統(tǒng)計(jì)表

請(qǐng)你根據(jù)統(tǒng)計(jì)圖表的信息,解答下列問題:

1a= ;b=

2)該調(diào)查統(tǒng)計(jì)數(shù)據(jù)的中位數(shù)是__________

3)扇形統(tǒng)計(jì)圖中,“3次”所對(duì)應(yīng)的扇形圓心角度數(shù)是______________;

4)若該校共有2000名學(xué)生,根據(jù)調(diào)查結(jié)果,估計(jì)該校學(xué)生在一周內(nèi)借閱圖書“4次以上”的人數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)“綜合與實(shí)踐”小組的同學(xué)把“測(cè)量斜拉索頂端到橋面的距離”作為一項(xiàng)課題活動(dòng),他們制訂了測(cè)量方案,并利用課余時(shí)間借助該橋斜拉索完成了實(shí)地測(cè)量.測(cè)量結(jié)果如下:如圖,兩側(cè)最長(zhǎng)斜拉索,相交于點(diǎn),分別與橋面交于,兩點(diǎn),且點(diǎn),在同一豎直平面內(nèi).測(cè)得,,米,請(qǐng)幫助該小組根據(jù)測(cè)量數(shù)據(jù),求斜拉索頂端點(diǎn)的距離.(參考數(shù)據(jù):,,,,.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在開發(fā)區(qū)建設(shè)中,要拆除煙囪AB,在地面上事先畫定以B為圓心,半徑與AB等長(zhǎng)的圓形危險(xiǎn)區(qū),現(xiàn)在從離B點(diǎn)21米遠(yuǎn)的建筑物CD頂點(diǎn)C,測(cè)得A點(diǎn)的仰角為,B點(diǎn)的俯角為,問離B點(diǎn)35米遠(yuǎn)的文物保護(hù)區(qū)是否在危險(xiǎn)區(qū)內(nèi),請(qǐng)通過計(jì)算說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸、軸分別相交于、兩點(diǎn),拋物線經(jīng)過點(diǎn),交軸正半軸于點(diǎn)

1)求該拋物線的函數(shù)表達(dá)式;

2)已知點(diǎn)是拋物線上的一個(gè)動(dòng)點(diǎn),并且點(diǎn)在第一象限內(nèi),連接、,設(shè)點(diǎn)的橫坐標(biāo)為,的面積為,求的函數(shù)表達(dá)式,并求出的最大值及此時(shí)動(dòng)點(diǎn)的坐標(biāo);

3)將點(diǎn)繞原點(diǎn)旋轉(zhuǎn)得點(diǎn),連接、,在旋轉(zhuǎn)過程中,一動(dòng)點(diǎn)從點(diǎn)出發(fā),沿線段以每秒個(gè)單位的速度運(yùn)動(dòng)到,再沿線段以每秒個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng)到后停止,求點(diǎn)在整個(gè)運(yùn)動(dòng)過程中用時(shí)最少是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀對(duì)人成長(zhǎng)的影響是巨大的,一本好書往往能改變?nèi)说囊簧磕甑?/span>423日被聯(lián)合國教科文組織確定為“世界讀書日”.藍(lán)天中學(xué)為了解八年級(jí)學(xué)生本學(xué)期的課外閱讀情況,隨機(jī)抽查部分學(xué)生對(duì)其課外閱讀量進(jìn)行統(tǒng)計(jì)分析,繪制成兩幅不完整的統(tǒng)計(jì)圖.根據(jù)圖示信息,解答下列問題:

1)求被抽查學(xué)生人數(shù),課外閱讀量的眾數(shù),扇形統(tǒng)計(jì)圖中m的值;并將條形統(tǒng)計(jì)圖補(bǔ)充完整;

2)若規(guī)定:本學(xué)期閱讀3本以上(含3本)課外書籍者為完成目標(biāo),據(jù)此估計(jì)該校600名學(xué)生中能完成此目標(biāo)的有多少人?

查看答案和解析>>

同步練習(xí)冊(cè)答案