【題目】已知:如圖1,線段AB、CD相交于點(diǎn)O,連接AD、CB,我們把形如圖1的圖形稱之為“8字形”.試解答下列問(wèn)題:

(1)在圖1中,請(qǐng)直接寫(xiě)出∠A、∠B、∠C、∠D之間的數(shù)量關(guān)系:   ;

(2)仔細(xì)觀察,在圖2中“8字形”的個(gè)數(shù):   個(gè)

(3)在圖2中,若∠D=40°,∠B=36°,∠DAB和BCD的平分線AP和CP相交于點(diǎn)P,并且與CD、AB分別相交于M、N.利用(1)的結(jié)論,試求P的度數(shù);

(4)如果圖2中D和B為任意角時(shí),其他條件不變,試問(wèn)P與∠D、∠B之間存在著怎樣的數(shù)量關(guān)系.(直接寫(xiě)出結(jié)論即可)

【答案】(1)∠A+∠D=∠B+∠C(2)6(3)∠P=38°(4)2∠P=∠B+∠D

【解析】

∠A、∠B、∠C、∠D之間的數(shù)量關(guān)系根據(jù)這四個(gè)角分別是兩個(gè)三角形的內(nèi)角,根據(jù)三角形的內(nèi)角和定理就可以得到.根據(jù)以上的結(jié)論,以及角平分線的定義就可以求出∠P的度數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,點(diǎn) M 在第四象限,它到 x 軸的距離為 6,到 y 軸的距離為 3,則點(diǎn) M的坐標(biāo)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一張四邊形紙片ABCD,∠A50°,∠C150°.若將其按照?qǐng)D所示方式折疊后,恰好MD′∥AB,ND′∥BC,則∠D的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=﹣x+3與x軸交于點(diǎn)C,與y軸交于點(diǎn)B,拋物線y=ax2+ x+c經(jīng)過(guò)B、C兩點(diǎn),點(diǎn)E是直線BC上方拋物線上的一動(dòng)點(diǎn).

(1)求拋物線的解析式;
(2)過(guò)點(diǎn)E作y軸的平行線交直線BC于點(diǎn)M、交x軸于點(diǎn)F,當(dāng)SBEC= 時(shí),請(qǐng)求出點(diǎn)E和點(diǎn)M的坐標(biāo);
(3)在(2)的條件下,當(dāng)E點(diǎn)的橫坐標(biāo)為1時(shí),在EM上是否存在點(diǎn)N,使得△CMN和△CBE相似?如果存在,請(qǐng)直接寫(xiě)出點(diǎn)N的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)多邊形的內(nèi)角和比它的外角和的2倍還大180°,這個(gè)多邊形的邊數(shù)是(

A.6B.7C.8D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的面積為2 cm2 , 對(duì)角線交于點(diǎn)O1 , 以AB、AO1為鄰邊做平行四邊形AO1C1B,對(duì)角線交于點(diǎn)O2 , 以AB、AO2為鄰邊做平行四邊形AO2C2B,…,以此類推,則平行四邊形AO6C6B的面積為cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】( 1﹣(3﹣ 0﹣2sin60°+| ﹣2|

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】冠狀病毒有多種類型,新型冠狀病毒也是其中的一種.冠狀病毒的直徑在60220納米之間,平均直徑為100納米左右(1納米=109米).那么100納米可用科學(xué)記數(shù)法表示為(  )

A.100×109B.100×109C.1×107D.1×107

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:直線EF分別與直線AB,CD相交于點(diǎn)F,E,EM平∠FED,ABCD,H,P分別為直線AB和線段EF上的點(diǎn).

(1)如圖1,HM平分∠BHP,若HPEF,求∠M的度數(shù).

(2)如圖2,EN平分∠HEFAB于點(diǎn)N,NQEM于點(diǎn)Q,當(dāng)H在直線AB上運(yùn)動(dòng)(不與點(diǎn)F重合)時(shí),探究∠FHE與∠ENQ的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案