如圖已知,銳角∠AOB,

求作∠β使得∠β=180°-2∠AOB.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖:y軸上正半軸上一點(diǎn)O1為圓心的圓交兩坐標(biāo)軸與A、B、C、D四點(diǎn),已知B(-3,0),AB=3
10

(1)求O1的坐標(biāo);
(2)過B作BH⊥AC于H交AO于E,求S△BDE;
(3)作⊙O1的內(nèi)接銳角△BKJ,作BM⊥KJ與M,作JN⊥BK與N,BM、JK交于H點(diǎn),當(dāng)銳角△BKJ的大小變化時(shí),給出下列兩個結(jié)論:①BK2+JH2的值不變;②|BK2-JH2|的值不變.其中有且只有一個結(jié)論是正確的,請你判斷哪一個結(jié)論正確,證明正確的結(jié)論并求出其值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=
1
2
mx2-
3
2
mx-2m交x軸于A(x1,0),B(x2,0)交y軸負(fù)半軸于C點(diǎn),且x1<0<x2,(AO+OB)2=12CO+1.
 (1)求拋物線的解析式;
(2)在x軸的下方是否存在著拋物線上的點(diǎn)P,使∠APB為銳角?若存在,求出P點(diǎn)的橫坐標(biāo)的范圍;若不存在,請說明理由.
(3)如圖點(diǎn)E(2,-5),將直線CE向上平移a個單位與拋物線交于M,N兩點(diǎn),若AM=AN,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,在直角坐標(biāo)系中,△ABO的位置如圖1,點(diǎn)O是坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(-3,4),AB=AO,AB∥x軸交于y軸于點(diǎn)H.

(1)填空:點(diǎn)B的坐標(biāo)(
2
2
,
4
4
   ),△ABO的面積是
10
10

(2)把△ABO沿直線OB翻折得到△CBO,連接AC交于y軸于點(diǎn)M,請?jiān)趫D2 中畫出圖形,并判斷此時(shí)四邊形AOCB的形狀,說明理由.
(3)連接BM,動點(diǎn)P從點(diǎn)A出發(fā),沿折線ABC方向向終點(diǎn)C勻速運(yùn)動,點(diǎn)P的運(yùn)動時(shí)間為t秒,點(diǎn)P的速度為每秒2個單位,設(shè)△PMB的面積為S(S≠0),求當(dāng)t為何值時(shí),S有最大值,并求出S的最大值.
(4)在(3)條件下,點(diǎn)P在運(yùn)動過程中,當(dāng)∠MPB+∠BCO=90°時(shí),求直線OP與直線AC所夾銳角的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,銳角△ABC的兩條高CD、BE相交于點(diǎn)O,且OB=OC.
(1)求證:△ABC是等腰三角形;
(2)連接AO,判斷AO與BC的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,銳角△ABC的兩條高CD、BE相交于點(diǎn)O,且OB=OC

【小題1】求證:△ABC是等腰三角形
【小題2】連結(jié)AO,判斷AO與BC的位置關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案