【題目】有六張分別標(biāo)有數(shù)字,,,,,的不透明卡片,它們除數(shù)字不同外其余全部相同,現(xiàn)將它們背面朝上,洗勻后從中任取一張,將該卡片上的數(shù)字記為,將該卡片上的數(shù)字加記為,則函數(shù)的圖象不過點且方程有實數(shù)解的概率為________.
【答案】
【解析】
首先根據(jù)題意列表,求出所有可能結(jié)果,得出符合要求的a,b的值,再利用概率公式即可求得答案.
假設(shè)函數(shù)y=ax2+bx+2的圖象過點(1,3),
則a×12+b×1+2=3,即:a+b=1,
根據(jù)題意列表得:
-2 | -1 | 0 | 1 | 2 | 3 |
(-2,-1) | (-1,0) | (0,1) | (1,2) | (2,3) | (3,4) |
共6種情況,其中只有5種情形符合題意,
因為方程ax2+bx+2=0有實數(shù)解,所以b2-8a≥0,其中只有2種情形滿足條件,
故函數(shù)y=ax2+bx+2的圖象不過點(1,3)且方程ax2+bx+2=0有實數(shù)解的概率為.
故答案為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對角線AC、BD相交于點O,CE∥BD,DE∥AC,若AC=4,則四邊形OCED的周長為( )
A. 4 B. 8 C. 10 D. 12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,∠A=40°,若點O是△ABC的外心,則∠BOC=_____°;若點I是△ABC的內(nèi)心,則∠BIC=_____°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算
(1)4a2b(2b2-1)
(2)(x-2y)(y+2x)
(3)(6m2n-3m2)÷(-3m2)
(4)2019×2017-20182(用簡便方法計算)
(5)先化簡,再求值:;其中
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小莉的爸爸買了今年七月份去上海看世博會的一張門票,她和哥哥兩人都很想去觀看,可門票只有一張,讀九年級的哥哥想了一個辦法,拿了八張撲克牌,將數(shù)字為1,2,3,5的四張牌給小莉,將數(shù)字為4,6,7,8的四張牌留給自己,并按如下游戲規(guī)則進行:小莉和哥哥從各自的四張牌中隨機抽出一張,然后將抽出的兩張撲克牌數(shù)字相加,如果和為偶數(shù),則小莉去;如果和為奇數(shù),則哥哥去.
(1)請用數(shù)狀圖或列表的方法求小莉去上?词啦⿻母怕;
(2)哥哥設(shè)計的游戲規(guī)則公平嗎?若公平,請說明理由;若不公平,請你設(shè)計一種公平的游戲規(guī)則.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“上升數(shù)”是一個數(shù)中右邊數(shù)字比左邊數(shù)字大的自然數(shù)(如:34,568,2469等).任取一個兩位數(shù),是“上升數(shù)”的概率是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線,拋物線.
當(dāng),時,求直線與拋物線的交點坐標(biāo);
當(dāng),時,將直線繞原點逆時針旋轉(zhuǎn)后與拋物線交于,兩點(點在點的左側(cè)),求,兩點的坐標(biāo);
若將中的條件“”去掉,其他條件不變,且,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】大學(xué)生小張利用暑假50天在一超市勤工儉學(xué),被安排銷售一款成本為40元/件的新型商品,此類新型商品在第x天的銷售量p件與銷售的天數(shù)x的關(guān)系如下表:
x(天) | 1 | 2 | 3 | … | 50 |
p(件) | 118 | 116 | 114 | … | 20 |
銷售單價q(元/件)與x滿足:當(dāng)1≤x<25時q=x+60;當(dāng)25≤x≤50時q=40+.
(1)請分析表格中銷售量p與x的關(guān)系,求出銷售量p與x的函數(shù)關(guān)系.
(2)求該超市銷售該新商品第x天獲得的利潤y元關(guān)于x的函數(shù)關(guān)系式.
(3)這50天中,該超市第幾天獲得利潤最大?最大利潤為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:像(+)()=3,=a(a≥0),(+1)(﹣1)=b﹣1(b≥0),……,這種兩個含二次根式的代數(shù)式相乘,積不含二次根式,我們稱這兩個代數(shù)式互為有理化因式例如:與,+1與﹣1,2+3與2﹣3等都是互為有理化因式,在進行二次根式計算時,利用有理化因式,可以化去分母中的根號.
例如:;;
解答下列問題:
(1)3﹣與 互為有理化因式,將分母有理化得 .
(2)計算:2﹣;
(3)觀察下面的變形規(guī)律并解決問題.
①=﹣1,=,=,…,若n為正整數(shù),請你猜想:= .
②計算:(+++…+)×(+1).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com