【題目】如圖,在四邊形ABCD中,ABDC,AB=AD,對(duì)角線ACBD交于點(diǎn)O,AC平分∠BAD,過(guò)點(diǎn)CCEABAB的延長(zhǎng)線于點(diǎn)E.連接OE

1)求證:四邊形ABCD是菱形;

2)若AB=OE=2,求線段CE的長(zhǎng).

【答案】1)證明見(jiàn)解析;(2

【解析】

1)先根據(jù)題意得出∠OAB=DCA,然后進(jìn)一步證明出∠DCA=DAC,得出CD=AD=AB,然后接著進(jìn)一步證明即可;

(2)先根據(jù)題意得出OE=OA=OC=2,再進(jìn)一步得出OB=1,通過(guò)證明△AOB∽△AEC然后利用相似三角形性質(zhì)進(jìn)一步求解即可.

1)證明:∵ABCD,

∴∠OAB=DCA,

AC為∠DAB的平分線,

∴∠OAB=DAC,

∴∠DCA=DAC,

CD=AD=AB,

ABCD,

∴四邊形ABCD是平行四邊形,

AD=AB,

∴平行四邊形ABCD是菱形;

2)∵四邊形ABCD是菱形,

OA=OC,BDAC

CEAB,

OE=OA=OC=2,

OB==1,AC=OA+OC=4

∵∠AOB=AEC=90°,∠OAB=EAC,

∴△AOB∽△AEC

=,

CE=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2016年,某貧困戶的家庭年人均純收入為2500元,通過(guò)政府產(chǎn)業(yè)扶持,發(fā)展了養(yǎng)殖業(yè)后,到2018年,家庭年人均純收入達(dá)到了3600元.

1)求該貧困戶2016年到2018年家庭年人均純收入的年平均增長(zhǎng)率;

2)若年平均增長(zhǎng)率保持不變,2019年該貧困戶的家庭年人均純收入是否能達(dá)到4200元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在平面直角坐標(biāo)系中,拋物線軸交于點(diǎn)、,與軸交于點(diǎn),拋物線的頂點(diǎn)軸的距離為,

1)如圖1,求拋物線的解析式;

2)如圖2,點(diǎn)為第三象限內(nèi)的拋物線上一點(diǎn),連接軸于點(diǎn),過(guò)點(diǎn)軸于點(diǎn),連接并延長(zhǎng)交于點(diǎn),求證:

3)如圖3,在(2)的條件下,點(diǎn)為第二象限內(nèi)的拋物線上的一點(diǎn),分別連接、,點(diǎn)的中點(diǎn),點(diǎn)為第二象限內(nèi)的一點(diǎn),分別連接,,,且,若,求點(diǎn)的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市銷(xiāo)售一種高檔蔬菜莼菜,其進(jìn)價(jià)為16/kg.經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn):該商品的日銷(xiāo)售量y(kg)是售價(jià)x(/kg)的一次函數(shù),其售價(jià)、日銷(xiāo)售量對(duì)應(yīng)值如表:

售價(jià)(/)

20

30

40

日銷(xiāo)售量()

80

60

40

(1)關(guān)于的函數(shù)解析式(不要求寫(xiě)出自變量的取值范圍);

(2)為多少時(shí),當(dāng)天的銷(xiāo)售利潤(rùn) ()最大?最大利潤(rùn)為多少?

(3)由于產(chǎn)量日漸減少,該商品進(jìn)價(jià)提高了/,物價(jià)部門(mén)規(guī)定該商品售價(jià)不得超過(guò)36/,該商店在今后的銷(xiāo)售中,日銷(xiāo)售量與售價(jià)仍然滿足(1)中的函數(shù)關(guān)系.若日銷(xiāo)售最大利潤(rùn)是864元,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在以線段AB為直徑的⊙O上取一點(diǎn),連接AC、BC.ABC沿AB翻折后得到ABD.

(1)試說(shuō)明點(diǎn)D在⊙O上;

(2)在線段AD的延長(zhǎng)線上取一點(diǎn)E,使AB2=AC·AE.求證:BE為⊙O的切線;

(3)在(2)的條件下,分別延長(zhǎng)線段AE、CB相交于點(diǎn)F,若BC=2,AC=4,求線段EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,∠ABC45°,CDABDBE平分∠ABC,且BEACE,與CD相交于點(diǎn)F,DHBCHBEG.下列結(jié)論:①BDCD;②AD+CFBD;③CEBF;④AEBG.其中正確的個(gè)數(shù)是(  )

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與探究

如圖1,拋物線yax2+bx3x軸交于A(﹣2,0),B4,0)兩點(diǎn),與y軸交于點(diǎn)C

1)求拋物線的表達(dá)式;

2)點(diǎn)N是拋物線上異于點(diǎn)C的動(dòng)點(diǎn),若△NAB的面積與△CAB的面積相等,求出點(diǎn)N的坐標(biāo);

3)如圖2,當(dāng)POB的中點(diǎn)時(shí),過(guò)點(diǎn)PPDx軸,交拋物線于點(diǎn)D.連接BD,將△PBD沿x軸向左平移m個(gè)單位長(zhǎng)度(0m2),將平移過(guò)程中△PBD與△OBC重疊部分的面積記為S,求Sm的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題背景:

如圖(a,點(diǎn)A、B在直線l的同側(cè),要在直線l上找一點(diǎn)C,使ACBC的距離之和最小,我們可以作出點(diǎn)B關(guān)于l的對(duì)稱(chēng)點(diǎn)B′,連接A B′與直線l交于點(diǎn)C,則點(diǎn)C即為所求.

1)實(shí)踐運(yùn)用:

如圖(b),已知,⊙O的直徑CD4,點(diǎn)A ⊙O 上,∠ACD=30°,B 為弧AD 的中點(diǎn),P為直徑CD上一動(dòng)點(diǎn),則BP+AP的最小值為

2)知識(shí)拓展:

如圖(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分線交BC于點(diǎn)D,E、F分別是線段ADAB上的動(dòng)點(diǎn),求BE+EF的最小值,并寫(xiě)出解答過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,,正方形的邊長(zhǎng)為2,將正方形繞點(diǎn)旋轉(zhuǎn)一周,連接、

1)猜想:的值是__________,直線與直線相交所成的銳角度數(shù)是__________

2)探究:直線垂直時(shí),求線段的長(zhǎng);

3)拓展:取的中點(diǎn),連接,直接寫(xiě)出線段長(zhǎng)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案