【題目】如圖,等邊三角形的頂點A(1,1)、B(3,1),規(guī)定把等邊△ABC“先沿y軸翻折,再向下平移1個單位”為一次變換,如果這樣連續(xù)經(jīng)過2020次變換后,等邊△ABC的頂點C的坐標(biāo)為____.
【答案】(2,).
【解析】
據(jù)軸對稱判斷出點C變換后在y軸的右側(cè),根據(jù)平移的距離求出點C變換后的縱坐標(biāo),最后寫出即可.
∵△ABC是等邊三角形,AB=3﹣1=2,
∴點C到y軸的距離為1+2×=2,點C到AB的距離為=,
∴C(2,+1),
把等邊△ABC先沿y軸翻折,得C’(-2,+1),再向下平移1個單位得C’’( -2,)
故經(jīng)過一次變換后,橫坐標(biāo)變?yōu)橄喾磾?shù),縱坐標(biāo)減1,
故第2020次變換后的三角形在y軸右側(cè),
點C的橫坐標(biāo)為2,
縱坐標(biāo)為+1﹣2020=﹣2019,
所以,點C的對應(yīng)點C'的坐標(biāo)是(2,﹣2019).
故答案為:(2,﹣2019).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:∠AOB和兩點C、D,求作一點P,使PC=PD,且點P到∠AOB的兩邊的距離相等.(要求:用尺規(guī)作圖,保留作圖痕跡,不寫作法,不要求證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BD是∠ABC的角平分線,DE∥BC,交AB于E,∠A=55°,∠BDC=95°,求△BDE各內(nèi)角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,Rt△ABE≌Rt△ECD,點B、E、C在同一直線上,則結(jié)論:①AE=ED;②AE⊥DE;③BC=AB+CD;④AB∥DC中成立的是( )
A. 僅① B. 僅①③ C. 僅①③④ D. 僅①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,OD⊥弦BC于點D,交⊙O于點E,AE與BC交于點F,點H為OD延長線上一點,且∠OHB=∠AEC.
(1)求證:BH是⊙O的切線;
(2)求證:CE2=EF·EA;
(3)若⊙O的半徑為5,sin∠C=,求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(1,3)在函數(shù)的圖象上,正方形的邊在軸上,點是對角線的中點,函數(shù)的圖象又經(jīng)過、兩點,則點的橫坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一張邊長為8的正方形紙片OABC放在直角坐標(biāo)系中,使得OA與y軸重合,OC與x軸重合,點P為正方形AB邊上的一點(不與點A、點B重合).將正方形紙片折疊,使點O落在P處,點C落在G處,PG交BC于H,折痕為EF.連接OP、OH.
初步探究
(1)當(dāng)AP=4時
①直接寫出點E的坐標(biāo) ;
②求直線EF的函數(shù)表達(dá)式.
深入探究
(2)當(dāng)點P在邊AB上移動時,∠APO與∠OPH的度數(shù)總是相等,請說明理由.
拓展應(yīng)用
(3)當(dāng)點P在邊AB上移動時,△PBH的周長是否發(fā)生變化?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+2x+c與x軸交A(﹣1,0),B兩點,與y軸交于點C(0,3),拋物線的頂點為點E.
(1)求拋物線的解析式;
(2)經(jīng)過B,C兩點的直線交拋物線的對稱軸于點D,點P為直線BC上方拋物線上的一個動點,當(dāng)點P運動到點E時,求△PCD的面積;
(3)點N在拋物線對稱軸上,點M在x軸上,是否存在這樣的點M與點N,使以M,N,C,B為頂點的四邊形是平行四邊形?若存在,請直接寫出點M的坐標(biāo)(不寫求解過程);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com