【題目】如圖,ABCBOD都是等腰直角三角形,∠ACB=BDO=90°,且點A在反比例函數(shù)的圖象上,若,則k的值為 ____.

【答案】-4

【解析】

設(shè)A點坐標(biāo)為(ab),根據(jù)等腰直角三角形的性質(zhì)得OB=BDAB=AC,BC=AC,OD=BD,則OB2-AB2=8,變形為OD2-AC2=4,利用平方差公式得到(OD+AC)(OD-AC=4,得到ab=-4,根據(jù)反比例函數(shù)圖象上點的坐標(biāo)特征易得k=-4

設(shè)A點坐標(biāo)為(a,b),
∵△ABCBOD都是等腰直角三角形,
AB=AC,OB=BD,BC=AC,OD=BD
OB2-AB2=8,
2OD2-2AC2=8,即OD2-AC2=4,
∴(OD+AC)(OD-AC=4,
又∵因為a0,b0,

ab=-4
k=4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c的頂點為M(﹣2,﹣4),與x軸交于A、B兩點,且A(﹣6,0),與y軸交于點C.

(1)求拋物線的函數(shù)解析式;

(2)求△ABC的面積;

(3)能否在拋物線第三象限的圖象上找到一點P,使△APC的面積最大?若能,請求出點P的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在荔枝種植基地有A、B兩個品種的樹苗出售,已知A種比B種每株多20元,買1A種樹苗和2B種樹苗共需200元.

1)問A、B兩種樹苗每株分別是多少元?

2)為擴大種植,某農(nóng)戶準(zhǔn)備購買A、B兩種樹苗共36株,且A種樹苗數(shù)量不少于B種數(shù)量的一半,請求出費用最省的購買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了促進學(xué)生多樣化發(fā)展,某校組織開展了社團活動,分別設(shè)置了體育類、藝術(shù)類、文學(xué)類及其它類社團(要求人人參與社團,每人只能選擇一項).為了解學(xué)生喜愛哪種社團活動,學(xué)校做了一次抽樣調(diào)查.根據(jù)收集到的數(shù)據(jù),繪制成如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息,完成下列問題:

(1)此次共調(diào)查了多少人?

(2)求文學(xué)社團在扇形統(tǒng)計圖中所占圓心角的度數(shù);

(3)請將條形統(tǒng)計圖補充完整;

(4)若該校有1500名學(xué)生,請估計喜歡體育類社團的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O的弦CD與直徑AB垂直于F,點ECD上,且AE=CE.

(1)求證:CA2=CE CD;

(2)已知CA=5,EC=3,求sinEAF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】口袋中裝有四個大小完全相同的小球,把它們分別標(biāo)號1,2,3,4,從中隨機摸出一個球,記下數(shù)字后放回,再從中隨機摸出一個球,利用樹狀圖或者表格求出兩次摸到的小球數(shù)和等于4的概率.

【答案】 .

【解析】試題分析:

根據(jù)題意列表如下,由表可以得到所有的等可能結(jié)果,再求出所有結(jié)果中,兩次所摸到小球的數(shù)字之和為4的次數(shù)即可計算得到所求概率.

試題解析

列表如下:

1

2

3

4

1

(1,1)

(1,2)

(1,3)

(1,4)

2

(2,1)

(2,2)

(2,3)

(2,4)

3

(3,1)

(3,2)

(3,3)

(3,4)

4

(4,1)

(4,2)

(4,3)

(4,4)

由表可知,共有16種等可能事件,其中兩次摸到的小球數(shù)字之和等于4的有(3,1)、(2,2)和(1,3),共計3,

P(兩次摸到小球的數(shù)字之和等于4=.

型】解答
結(jié)束】
23

【題目】小亮同學(xué)想利用影長測量學(xué)校旗桿AB的高度,如圖,他在某一時刻立1米長的標(biāo)桿測得其影長為1.2米,同時旗桿的投影一部分在地面上BD處,另一部分在某一建筑的墻上CD處,分別測得其長度為9.6米和2米,求旗桿AB的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AE∥BF,AC平分∠BAE,交BF于點C,BD平分∠ABC,交AE于點D,連接CD.

(1)求證:四邊形ABCD是菱形;

(2)若AB=5,AC=6,求AE,BF之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD,EDC邊上一點,DE=1,AE繞點E逆時針旋轉(zhuǎn)90度,得到EF,連接AF,FC,則FC=____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】王老師家買了一套新房,其結(jié)構(gòu)如圖所示(單位:m)他打算將臥室鋪上木地板,其余部分鋪上地磚

(1)木地板和地磚分別需要多少平方米?

(2)如果地磚的價格為每平方米x木地板的價格為每平方米3x,那么王老師需要花多少錢?

查看答案和解析>>

同步練習(xí)冊答案