【題目】如圖,在一塊斜邊長30cm的直角三角形木板(Rt△ACB)上截取一個正方形CDEF,點D在邊BC上,點E在斜邊AB上,點F在邊AC上,若AFAC13,則這塊木板截取正方形CDEF后,剩余部分的面積為( )

A. 100cm2B. 150cm2C. 170cm2D. 200cm2

【答案】A

【解析】

AFx,根據正方形的性質用x表示出EF、CF,證明△AEF∽△ABC,根據相似三角形的性質求出BC,根據勾股定理列式求出x,根據三角形的面積公式、正方形的面積公式計算即可.

AFx,則AC3xFC=2x,

四邊形CDEF為正方形,

∴EFCF2x,EF∥BC,

∴△AEF∽△ABC

,

∴BC6x,

Rt△ABC中,AB2AC2+BC2,即302(3x)2+(6x)2,

解得,x2,

∴AC6,BC12,

剩余部分的面積=×12×64×4100(cm2)

故選A.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一種火爆的網紅電子產品,每件產品成本元、工廠將該產品進行網絡批發(fā),批發(fā)單價(元)與一次性批發(fā)量(件)(為正整數(shù))之間滿足如圖所示的函數(shù)關系.

直接寫出之間所滿足的函數(shù)關系式,并寫出自變量的取值范圍;

若一次性批發(fā)量不超過件,當批發(fā)量為多少件時,工廠獲利最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了提高農田利用效益,某地由每年種植雙季稻改為先養(yǎng)殖小龍蝦再種植一季水稻的“蝦稻”輪作模式.某農戶有農田20畝,去年開始實施“蝦稻”輪作,去年出售小龍蝦每千克獲得的利潤為32(利潤=售價﹣成本).由于開發(fā)成本下降和市場供求關系變化,今年每千克小龍蝦的養(yǎng)殖成本下降25%,售價下降10%,出售小龍蝦每千克獲得利潤為30元.

(1)求去年每千克小龍蝦的養(yǎng)殖成本與售價;

(2)該農戶今年每畝農田收獲小龍蝦100千克,若今年的水稻種植成本為600/畝,稻谷售價為25/千克,該農戶估計今年可獲得“蝦稻”輪作收入不少于8萬元,則稻谷的畝產量至少會達到多少千克?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知∠AOB60°,OC是∠AOB的平分線,點DOC上一點,過D作直線DEOA,垂足為點E,且直線DEOB于點F,如圖所示.若DE2,則DF_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】以下四個命題:用換元法解分式方程時,如果設,那么可以將原方程化為關于的整式方程;如果半徑為的圓的內接正五邊形的邊長為,那么;有一個圓錐,與底面圓直徑是且體積為的圓柱等高,如果這個圓錐的側面展開圖是半圓,那么它的母線長為;④二次函數(shù),自變量的兩個值對應的函數(shù)值分別為,若,則.其中正確的命題的個數(shù)為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點PO外,PCO的切線,C為切點,直線POO相交于點A、B.

1)若∠A30°,求證:PA3PB

2)小明發(fā)現(xiàn),∠A在一定范圍內變化時,始終有∠BCP90°﹣∠P)成立.請你寫出推理過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正比例函數(shù)y1k1x的圖象與反比例函數(shù)y2x0)的圖象相交于點A,2),點B是反比例函數(shù)圖象上一點,它的橫坐標是3,連接OBAB,則△AOB的面積是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y1=a(x+2)2+m過原點,與拋物線y2=(x﹣3)2+n交于點A(1,3),過點Ax軸的平行線,分別交兩條拋物線于點B,C.下列結論:兩條拋物線的對稱軸距離為5;②x=0時,y2=5;③x>3時,y1﹣y2>0;④y軸是線段BC的中垂線.正確結論是________(填寫正確結論的序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】性質探究

如圖①,在等腰三角形中,,則底邊與腰的長度之比為________.

理解運用

若頂角為120°的等腰三角形的周長為,則它的面積為________

⑵如圖②,在四邊形中,

①求證:;

②在邊上分別取中點,連接.若,直接寫出線段的長.

類比拓展

頂角為的等腰三角形的底邊與一腰的長度之比為________(用含的式子表示).

查看答案和解析>>

同步練習冊答案