如圖,在⊙O中,AB為⊙O的直徑,C、D為⊙O上兩點(diǎn),弦AC=,△ACD為等邊三角形,CD、AB相交于點(diǎn)E.
(1)求∠BAC的度數(shù);
(2)求⊙O的半徑;
(3)求CE的長(zhǎng).
(1)30°;(2)2;(3).
【解析】
試題分析:(1)由直徑所對(duì)圓周角為90°可以得到∠ACB=90°,再由圓周角定理得到∠D=∠B=60°,從而得到∠BAC的度數(shù)為30°;
(2)由∠BAC=30°,∠ACB=90°,用三角函數(shù)可以求出AB的長(zhǎng),進(jìn)而求出半徑的長(zhǎng);
(3)由△ACD為等邊三角形,得到∠ACD=60°,又因?yàn)椤螩AB=30°,所以∠AEC=90°,從而求出CE的長(zhǎng).
試題解析:(1)∵AB為⊙O的直徑,∴∠ACB=90°,∵△ADC為等邊三角形,∴∠ACD=∠D=60°,∵∠B=∠D,∴∠B=60°,∴∠BAC=30°;
(2)∵∠BAC=30°,∠ACB=90°,∴cos∠BAC=,∴,解得:AB=4,∴⊙O的半徑=2;
(3)∵∠BAC=30°,∠ACD=60°,∴∠AEC=90°,∴CE=AC=.
考點(diǎn):1.圓周角定理;2.等邊三角形的性質(zhì);3.銳角三角函數(shù)的定義;4.含30度角的直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com