【題目】小明騎單車上學,當他騎了一段路時,想起要買某本書,于是又折回到剛經過的某書店,買到書后繼續(xù)去學校,以下是他本次上學所用的時間與路程的關系示意圖.根據(jù)圖中提供的信息回答下列問題;
(1)小明家到學校的路程是 米.
(2)小明折回書店時騎車的速度是 米/分,小明在書店停留了 分鐘.
(3)本次上學途中,小明一共行駛了 米,從離家至到達學校一共用了 分鐘;
(4)在整個上學的途中 分鐘至 分鐘小明騎車速度最快,最快的速度是 米/分.
【答案】(1)1500;(2)300,4;(3)2700,14;(4)12,14,450
【解析】
(1)根據(jù)縱坐標表示離家距離,可得小明家到學校的路程;
(2)利用折回書店時的路程除以時間即可求出小明折回書店時騎車的速度,根據(jù)在書店時離家距離不變即可得小明在書店停留的時間;
(3)求出小明先騎行的路程,折回書店的路程和繼續(xù)去學校行走的路程之和,即可得出小明一共行駛的路程,根據(jù)橫坐標表示時間可得從離家至到達學校一共用的時間;
(4)根據(jù)函數(shù)圖象越“陡”,小明騎車速度最快,利用路程除以時間即可求出最快的速度.
解:根據(jù)小明本次上學所用的時間與路程的關系示意圖可知:
(1)小明家到學校的路程是1500米.
故答案為:1500;
(2)小明折回書店時騎車的速度是=300(米/分),
小明在書店停留了12﹣8=4(分鐘).
故答案為:300,4;
(3)本次上學途中,小明一共行駛了1200+(1200﹣600)+(1500﹣600)=2700米,
從離家至到達學校一共用了14分鐘;
故答案為:2700,14;
(4)在整個上學的途中12分鐘至14分鐘小明騎車速度最快,
最快的速度是=450(米/分).
故答案為:12,14,450.
科目:初中數(shù)學 來源: 題型:
【題目】△ABC中,∠ACB=90°,AC=BC,直線l經過點C,BD⊥l,AE⊥l,,垂足分別為D、E.
(1)當A、B在直線l同側時,如圖1,
①證明:△AEC≌△CDB;
②若AE=3,BD=4,計算△ACB的面積.(提示:間接求)
(2)當A. B在直線l兩側時,如圖2,若AE=3,BD=4,連接AD,BE直接寫出梯形ADBE的面積___.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,中,,小聰同學利用直尺和圓規(guī)完成了如下操作:
①作的平分線交于點;
②作邊的垂直平分線,與相交于點;
③連接,.
請你觀察圖形解答下列問題:
(1)線段,,之間的數(shù)量關系是________;
(2)若,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩名同學分別進行6次射擊訓練,訓練成績(單位:環(huán))如下表
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六交 | |
甲 | 9 | 8 | 6 | 7 | 8 | 10 |
乙 | 8 | 7 | 9 | 7 | 8 | 8 |
對他們的訓練成績作如下分析,其中說法正確的是( )
A. 他們訓練成績的平均數(shù)相同 B. 他們訓練成績的中位數(shù)不同
C. 他們訓練成績的眾數(shù)不同 D. 他們訓練成績的方差不同
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算下列各題;
(1)4(a3)4﹣(3a6)2
(2)﹣6xy(x﹣2y)
(3)(9x2y﹣6xy2)÷3xy
(4)(a+2b)(a﹣2b)﹣(a+b)2
(5)(﹣12)0+2﹣2
(6)20182﹣2017×2019(用公式)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著龍蝦節(jié)的火熱舉辦,某龍蝦養(yǎng)殖大戶為了發(fā)揮技術優(yōu)勢,一次性收購了10000kg小龍蝦,計劃養(yǎng)殖一段時間后再出售.已知每天養(yǎng)殖龍蝦的成本相同,放養(yǎng)10天的總成本為166000,放養(yǎng)30天的總成本為178000元.設這批小龍蝦放養(yǎng)t天后的質量為akg,銷售單價為y元/kg,根據(jù)往年的行情預測,a與t的函數(shù)關系為a= ,y與t的函數(shù)關系如圖所示.
(1)設每天的養(yǎng)殖成本為m元,收購成本為n元,求m與n的值;
(2)求y與t的函數(shù)關系式;
(3)如果將這批小龍蝦放養(yǎng)t天后一次性出售所得利潤為W元.問該龍蝦養(yǎng)殖大戶將這批小龍蝦放養(yǎng)多少天后一次性出售所得利潤最大?最大利潤是多少?
(總成本=放養(yǎng)總費用+收購成本;利潤=銷售總額﹣總成本)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在等邊△ABC中,點D在BC邊上(不與點B、點C重合),點E在AC的延長線上,DE=DA(如圖1).
(1)求證:∠BAD=∠EDC;
(2)點E關于直線BC的對稱點為M,連接DM,AM.
①依題意將圖2補全;
②若點D在BC邊上運動,DA與AM始終相等嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖, 在中, ,,,P是邊BC上的一動點,過點P作PE⊥AB,垂足為E,延長PE至點Q,使PQ=PC, 聯(lián)結交邊AB于點.
(1)求AD的長;
(2)設,的面積為y, 求y關于x的函數(shù)解析式,并寫出定義域;
(3)過點C作, 垂足為F, 聯(lián)結PF、QF, 試探索當點P在邊BC的什么位置時,為等邊三角形?請指出點P的位置并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在所給正方形網(wǎng)格圖中完成下列各題:(用直尺畫圖,保留痕跡)
(1)畫出格點△ABC(頂點均在格點上)關于直線DE對稱的△A1B1C1;
(2)在DE上畫出點Q,使QA+QC最。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com