【題目】對(duì)于某一函數(shù)給出如下定義:若存在實(shí)數(shù)m,自變量的值為m 時(shí),函數(shù)值等于m,則稱(chēng)m為這個(gè)函數(shù)的反向值.在函數(shù)存在反向值時(shí),該函數(shù)的最大反向值與最小反向值之差n稱(chēng)為這個(gè)函數(shù)的反向距離.特別地,當(dāng)函數(shù)只有一個(gè)反向值時(shí),其反向距離n為零. 例如:圖中的函數(shù)有 4,-1兩個(gè)反向值,其反向距離 n 等于 5. 現(xiàn)有函數(shù)y=,則這個(gè)函數(shù)的反向距離的所有可能值有( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)及以上的有限個(gè)D. 無(wú)數(shù)個(gè)
【答案】B
【解析】
根據(jù)題目中的函數(shù)解析式和題目中的新定義,寫(xiě)出這個(gè)函數(shù)的反向距離的所有可能值,并寫(xiě)出相應(yīng)m的取值范圍. .
解:∵y=
∴當(dāng)x≥k時(shí),
-k=k2-3k,得k=0或k=2,
∴n=2-0=2,
∴k>2或k≤-2;
當(dāng)x<k時(shí),
-k=-k2-3k,
解得,k=0或k=-4,
∴n=0-(-4)=4,
∴-2<k≤2,
由上可得,當(dāng)k>2或k≤-2時(shí),n=2,
當(dāng)-2<k≤2時(shí),n=4.
∴這個(gè)函數(shù)的反向距離的所有可能值有兩個(gè).
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某人在山坡坡腳C處測(cè)得一座建筑物頂點(diǎn)A的仰角為63.4°,沿山坡向上走到P處再測(cè)得該建筑物頂點(diǎn)A的仰角為53°.已知BC=90米,且B、C、D在同一條直線上,山坡坡度i=5:12.
(1)求此人所在位置點(diǎn)P的鉛直高度.(結(jié)果精確到0.1米)
(2)求此人從所在位置點(diǎn)P走到建筑物底部B點(diǎn)的路程(結(jié)果精確到0.1米)
(測(cè)傾器的高度忽略不計(jì),參考數(shù)據(jù):tan53°≈,tan63.5°≈2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(問(wèn)題情境)如圖,Rt△ABC中,∠ACB=90°,CD⊥AB,我們可以利用△ABC與△ACD相似證明AC2=AD·AB,這個(gè)結(jié)論我們稱(chēng)之為射影定理,試證明這個(gè)定理;
(結(jié)論運(yùn)用)如圖,正方形ABCD的邊長(zhǎng)為6,點(diǎn)O是對(duì)角線AC、BD的交點(diǎn),點(diǎn)E在CD上,過(guò)點(diǎn)C作CF⊥BE,垂足為F,連接OF.
(1)試?yán)蒙溆岸ɡ碜C明△ABC∽△BED;
(2)若DE=2CE,求OF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在半徑為6cm的⊙O中,點(diǎn)A是劣弧BC的中點(diǎn),點(diǎn)D是優(yōu)弧BC上一點(diǎn),且∠D=30°,下列四個(gè)結(jié)論:①OA⊥BC;②BC=6cm;③sin∠AOB=;④四邊形ABOC是菱形.其中正確結(jié)論的序號(hào)是( )
A. ①③ B. ①②③④ C. ②③④ D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于一個(gè)三角形,設(shè)其三個(gè)內(nèi)角的度數(shù)分別為x°、y°和z°,若x、y、z滿(mǎn)足x2+y2=z2,我們定義這個(gè)三角形為美好三角形.
(1)△ABC中,若∠A=40°,∠B=80°,則△ABC (填“是”或“不是”)美好三角形;
(2)如圖,銳角△ABC是⊙O的內(nèi)接三角形,∠C=60°,AC=2,⊙O的直徑是2,求證:△ABC是美好三角形;
(3)已知△ABC是美好三角形,∠A=30°,求∠C的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某公司分兩次采購(gòu)了一批原料,已知第二次的采購(gòu)數(shù)量是第一次采購(gòu)數(shù)量的兩倍,其它信息如下表:
第一次 | 第二次 | |
每噸原料的價(jià)格(元) | m+500 | m-500 |
采購(gòu)費(fèi)用(萬(wàn)元) | 40 | 60 |
(1)求m的值,并求出這兩次共采購(gòu)了多少?lài)嵲希?/span>
(2)該公司可將原料加工成A型產(chǎn)品或B型產(chǎn)品,而受設(shè)備限制每天只能安排加工一種型號(hào)產(chǎn)品.經(jīng)統(tǒng)計(jì),加工A型產(chǎn)品與B型產(chǎn)品各1天共需用原料數(shù)為20噸,加工3天A型產(chǎn)品與加工2天B型產(chǎn)品所需用原料數(shù)相等.請(qǐng)求出加工成A,B型產(chǎn)品每天所需的原料數(shù)分別是多少?lài)崳?/span>
(3)該公司將生產(chǎn)的兩種產(chǎn)品全部出口國(guó)外,每噸原料加工成A,B型產(chǎn)品后的獲利分別是1000元與600元,但要求加工時(shí)間不超過(guò)30天.為了使總利潤(rùn)獲得最大,應(yīng)采用怎樣的加工方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)經(jīng)濟(jì)的快速發(fā)展讓眾多國(guó)家感受到了威脅,隨著釣魚(yú)島事件、南海危機(jī)、薩德入韓等系列事件的發(fā)生,國(guó)家安全一再受到威脅,所謂“國(guó)家興亡,匹夫有責(zé)”,某校積極開(kāi)展國(guó)防知識(shí)教育,九年級(jí)甲、乙兩班分別選5名同學(xué)參加“國(guó)防知識(shí)”比賽,其預(yù)賽成績(jī)?nèi)鐖D所示:
(1)根據(jù)如圖填寫(xiě)如表:
平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 | |
甲班 | 8.5 | 8.5 | ||
乙班 | 8.5 | 10 | 1.6 |
(2)根據(jù)如表數(shù)據(jù),分析哪個(gè)班的成績(jī)較好,請(qǐng)?jiān)敿?xì)說(shuō)明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O中,OA=AB,OC⊥AB,則下列結(jié)論錯(cuò)誤的是( 。
A. 弦AB的長(zhǎng)等于圓內(nèi)接正六邊形的邊長(zhǎng)
B. 弦AC的長(zhǎng)等于圓內(nèi)接正十二邊形的邊長(zhǎng)
C.
D. ∠BAC=30°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中拋物線y=(x+1)(x﹣3)與x軸相交于A、B兩點(diǎn),若在拋物線上有且只有三個(gè)不同的點(diǎn)C1、C2、C3,使得△ABC1、△ABC2、△ABC3的面積都等于m,則m的值是( 。
A. 6 B. 8 C. 12 D. 16
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com