【題目】如圖,拋物線y=﹣x2+bx+cx軸交于點(diǎn)A和點(diǎn)B(3,0),與y軸交于點(diǎn)C(0,3),點(diǎn)D是拋物線的頂點(diǎn),過點(diǎn)Dx軸的垂線,垂足為E,連接DB.

(1)求此拋物線的解析式及頂點(diǎn)D的坐標(biāo);

(2)點(diǎn)M是拋物線上的動(dòng)點(diǎn),設(shè)點(diǎn)M的橫坐標(biāo)為m.

當(dāng)∠MBA=∠BDE時(shí),求點(diǎn)M的坐標(biāo);

過點(diǎn)MMN∥x軸,與拋物線交于點(diǎn)N,Px軸上一點(diǎn),連接PM,PN,將△PMN沿著MN翻折,得△QMN,若四邊形MPNQ恰好為正方形,直接寫出m的值.

【答案】(1)(1,4)(2)①點(diǎn)M坐標(biāo)(﹣,)或(﹣,﹣);②m的值為

【解析】

(1)利用待定系數(shù)法即可解決問題;

(2)①根據(jù)tanMBA=,tanBDE==,由∠MBA=BDE,構(gòu)建方程即可解決問題;②因?yàn)辄c(diǎn)M、N關(guān)于拋物線的對(duì)稱軸對(duì)稱,四邊形MPNQ是正方形,推出點(diǎn)P是拋物線的對(duì)稱軸與x軸的交點(diǎn),即OP=1,易證GM=GP,即|-m2+2m+3|=|1-m|,解方程即可解決問題.

(1)把點(diǎn)B(3,0),C(0,3)代入y=﹣x2+bx+c,

得到,解得,

∴拋物線的解析式為y=﹣x2+2x+3,

y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,

∴頂點(diǎn)D坐標(biāo)(1,4);

(2)①作MGx軸于G,連接BM.則∠MGB=90°,設(shè)M(m,﹣m2+2m+3),

MG=|﹣m2+2m+3|,BG=3﹣m,

tanMBA=,

DEx軸,D(1,4),

∴∠DEB=90°,DE=4,OE=1,

B(3,0),

BE=2,

tanBDE==,

∵∠MBA=BDE,

=

當(dāng)點(diǎn)Mx軸上方時(shí), =,

解得m=﹣3(舍棄),

M(﹣),

當(dāng)點(diǎn)Mx軸下方時(shí), =,

解得m=﹣m=3(舍棄),

∴點(diǎn)M(﹣,﹣),

綜上所述,滿足條件的點(diǎn)M坐標(biāo)(﹣,)或(﹣,﹣);

②如圖中,∵MNx軸,

∴點(diǎn)M、N關(guān)于拋物線的對(duì)稱軸對(duì)稱,

∵四邊形MPNQ是正方形,

∴點(diǎn)P是拋物線的對(duì)稱軸與x軸的交點(diǎn),即OP=1,

易證GM=GP,即|﹣m2+2m+3|=|1﹣m|,

當(dāng)﹣m2+2m+3=1﹣m時(shí),解得m=

當(dāng)﹣m2+2m+3=m﹣1時(shí),解得m=,

∴滿足條件的m的值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知CD是△ABC中AB邊上的高,以CD為直徑的⊙O分別交CA, CB于點(diǎn)E,F(xiàn),點(diǎn)G是AD的中點(diǎn).求證:GE是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為增強(qiáng)學(xué)生的身體素質(zhì),教育行政部門規(guī)定學(xué)生每天參加戶外活動(dòng)的平均時(shí)間不少于1小時(shí).為了解學(xué)生參加戶外活動(dòng)的情況,對(duì)部分學(xué)生參加戶外活動(dòng)的時(shí)間進(jìn)行抽樣調(diào)查,并將調(diào)查結(jié)果繪制作成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息解答下列問題:

1)在這次調(diào)查中共調(diào)查了多少名學(xué)生?

2)補(bǔ)充頻數(shù)分布直方圖;

3)求表示戶外活動(dòng)時(shí)間 1小時(shí)的扇形圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊△ABC中,BMABC內(nèi)部的一條射線,且,點(diǎn)A關(guān)于BM的對(duì)稱點(diǎn)為D,連接AD,BDCD,其中AD、CD的延長(zhǎng)線分別交射線BM于點(diǎn)E,P

(1)依題意補(bǔ)全圖形;

(2)若ABM ,求BDC 的大。ㄓ煤的式子表示);

(3)用等式表示線段PBPCPE之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知銳角△ABC,∠ABC45°,ADBCD,BEACE,交ADF

1)求證:△BDF≌△ADC

2)若BD4,DC3,求線段BE的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《國(guó)家學(xué)生體質(zhì)健康標(biāo)準(zhǔn)》規(guī)定:體質(zhì)測(cè)試成績(jī)達(dá)到90.0分及以上的為優(yōu)秀;達(dá)到80.0分至89.9分的為良好;達(dá)到60.0分至79.9分的為及格;59.9分及以下為不及格,某校為了了解九年級(jí)學(xué)生體質(zhì)健康狀況,從該校九年級(jí)學(xué)生中隨機(jī)抽取了10%的學(xué)生進(jìn)行體質(zhì)測(cè)試,測(cè)試結(jié)果如下面的統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖所示。

各等級(jí)學(xué)生平均分統(tǒng)計(jì)表

等級(jí)

優(yōu)秀

良好

及格

不及格

平均分

92.1

85.0

69.2

41.3

各等級(jí)學(xué)生人數(shù)分布扇形統(tǒng)計(jì)圖

1)扇形統(tǒng)計(jì)圖中不及格所占的百分比是  ;

2)計(jì)算所抽取的學(xué)生的測(cè)試成績(jī)的平均分;

3)若所抽取的學(xué)生中所有不及格等級(jí)學(xué)生的總分恰好等于某一個(gè)良好等級(jí)學(xué)生的分?jǐn)?shù),請(qǐng)估計(jì)該九年級(jí)學(xué)生中約有多少人達(dá)到優(yōu)秀等級(jí)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為1,點(diǎn)E是弧AC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)E的切線與AD交于點(diǎn)M.與CD交于點(diǎn)N

1)求證:∠MBN45°;

2)設(shè)AMx,CNy,求y關(guān)于x的函數(shù)關(guān)系式;

3)設(shè)正方形的對(duì)角線ACBMP,BNQ,如果APm,CQn,求mn之間滿足的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知三角形紙片△ABC和△DEF重合在一起,ABAC,DEDF,△ABC≌△DEF.?dāng)?shù)學(xué)實(shí)驗(yàn)課上,張老師讓同學(xué)們用這兩張紙片進(jìn)行如下操作:

(1)(操作探究1)保持△ABC不動(dòng),將△DEF沿射線BC方向平移至圖2所示位置,通過度量發(fā)現(xiàn)BECE12,則SCGESCAB   ;

(2)(操作探究2)保持△ABC不動(dòng),將△DEF通過一次全等變換(平移、旋轉(zhuǎn)或翻折后和△ABC拼成以BC為一條對(duì)角線的菱形,請(qǐng)用語言描述你的全等變換過程.

(3)(操作探究3)將兩個(gè)三角形按圖3所示放置:點(diǎn)C與點(diǎn)F重合,ABDE.保持△ABC不動(dòng),將△DEF沿射線DA方向平移.若AB13,BC10,設(shè)△DEF平移的距離為m

當(dāng)m0時(shí),連接AD、BE,判斷四邊形ABED的形狀并說明理由;

在平移的過程中,四邊形ABED能否成為正方形?若能,請(qǐng)求出m的值;若不能,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案