【題目】如圖,是半圓的直徑,射線于點,點是射線上一動點,連接,將沿翻折,點落在點處,過點作直線.

1)當時,求證:是半圓的切線;

2)點在射線上繼續(xù)向上運動,直線是否會再次與半圓相切,若相切,求出的度數(shù);若不相切,請說明理由.

【答案】1)見解析;(2.

【解析】

1)過點于點,過點于點,利用求得,進而求得BF=OB,所以OD=OB,即可求證.

2)畫出可能情況,利用平行線性質,可得,由是半圓的切線可知:;所以,進而求得 ;即可求得

證明:(1)過點于點,過點于點,

,則

,則

,則

是半圓的切線.

2)解:直線與半圓會再次相切.如圖所示:

設直線與半圓相切于點,連接,

,∴,

,交于點,則,

又∵,∴,

∴四邊形是矩形,

.

是由沿翻折得到,

,,

,

即在中,

,

,則.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,用一段25m的籬笆圈成一個一邊靠墻的矩形菜園,墻長12m,為方便進出,在垂直于墻的一邊留一個1m寬的門.

1)當菜園面積為80m2時,所用矩形菜園的長、寬分別為多少?

2)所圍成的矩形菜園的面積能為90m2嗎?如果能,請求此時菜園的長和寬;如果不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】近幾年購物的支付方式日益增多,某數(shù)學興趣小組就此進行了抽樣調查.調查結果顯示,支付方式有:A微信、B支付寶、C現(xiàn)金、D其他,該小組對某超市一天內購買者的支付方式進行調查統(tǒng)計,得到如下兩幅不完整的統(tǒng)計圖.

請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

(1)本次一共調查了多少名購買者?

(2)請補全條形統(tǒng)計圖;在扇形統(tǒng)計圖中A種支付方式所對應的圓心角為   度.

(3)若該超市這一周內有1600名購買者,請你估計使用AB兩種支付方式的購買者共有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,無人機在空中C處測得地面A、B兩點的俯角分別為60°、45°,如果無人機距地面高度CD米,點A、D、E在同一水平直線上,則A、B兩點間的距離是_____米.(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形ABCD沿AF折疊,使點D落在BC邊的點E處,過點E作EG∥CD交舡于點G,連接DG.

(1)求證:四邊形EFDG是菱形;

(2) 求證: ;

(3)若AG=6,EG=2,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某通訊器材公司銷售一種市場需求較大的新型通訊產(chǎn)品, 已知每件產(chǎn)品的進價為元,每年銷售該產(chǎn)品的總開支(不含進價)總計萬元,在銷售過程中發(fā)現(xiàn),年銷售量(萬件)與銷售單價(元)之間存在如圖所示的一次函數(shù)關系.

1)求關于的函數(shù)關系;

2)試寫出該公司銷售該種產(chǎn)品的年獲利(萬元)關于銷售單價(元)的函數(shù)關系式(年獲利=年銷售額-年銷售產(chǎn)品總進價-年總開支),當銷售單價為何值時年獲利最大?并求這個最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】RtABC中,∠C90°,點OAB的中點,M、N分別在邊AC、BC上,OMON,連MNAC4,BC8.設AMaBNb,MNc

(1) 求證:a2b2c2

(2) a1,求b;② 探究ab之間的函數(shù)關系式

(3) CMN的面積的最大值為__________(不寫解答過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商品的進價為每件40元,售價每件不低于60元且每件不高于80.當售價為每件60元是,每個月可賣出100件;如果每件商品的售價每上漲1元,則每個月少賣2.設每件商品的售價為元(為正整數(shù)),每個月的銷售利潤為.

1)求的函數(shù)關系式并直接寫出自變量的取值范圍;

2)每件商品的售價定為多少元時,每個月可獲得最大利潤?最大的月利潤是多少元?

3)當每件商品定價為多少元使得每個月的利潤恰為2250元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:O為ABC的外接圓,AB=AC,E是AB的中點,連OE,OE=,BC=8,則O的半徑為(  )

A. 3 B. C. D. 5

查看答案和解析>>

同步練習冊答案