【題目】如圖,AB是⊙O直徑,CD為⊙O的切線(xiàn),C為切點(diǎn),過(guò)A作CD的垂線(xiàn),垂足為D.
(1)求證:AC平分∠BAD;
(2)若⊙O半徑為5,CD=4,求AD的長(zhǎng).
【答案】(1)詳見(jiàn)解析;(2)8;
【解析】
(1)連接OC,則OC⊥CD,因?yàn)?/span>CD⊥AD從而OC∥AD,利用平行線(xiàn)的性質(zhì)及等邊對(duì)等角,等量代換即可得到∠DAC=∠CAO,從而可知AC平分∠BAD
(2)過(guò)點(diǎn)O作OE⊥AD于點(diǎn)E,利用勾股定理求出AE,再利用即可求解.
(1)證明:如圖1,連接OC,
∵直線(xiàn)CD切半圓O于點(diǎn)C,
∴OC⊥CD,
∵CD⊥AD,
∴OC∥AD,
∴∠DAC=∠ACO,
∵OA=OC,
∴∠ACO=∠CAO,
∴∠DAC=∠CAO,
∴AC平分∠BAD;
(2)如圖2,過(guò)點(diǎn)O作OE⊥AD于點(diǎn)E,
∵∠OCD=∠OED=∠CDE=90°,
∴四邊形OEDC是矩形,
∴DC=OE=4,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為切實(shí)加強(qiáng)中小學(xué)生交通安全宣傳教育,讓學(xué)生真正知危險(xiǎn)、會(huì)避險(xiǎn),鄭州市某中學(xué)開(kāi)展了“交通安全進(jìn)校園”系列活動(dòng).為了解七、八年級(jí)學(xué)生對(duì)交通安全知識(shí)的掌握情況,對(duì)七、八年級(jí)學(xué)生進(jìn)行了測(cè)試,現(xiàn)從兩年級(jí)中各隨機(jī)抽取20名學(xué)生的測(cè)試成績(jī)(百分制)進(jìn)行整理、描述和分析(成績(jī)不低于90分為優(yōu)秀).
測(cè)試成績(jī)(百分制)如下:
七年級(jí):52,78,82,86,77,83,92,87,72,81,93,98,81,69,87,86,80,81,82,94
八年級(jí):87,77,90,79,93,83,88,84,82,94,86,88,57,68,89,59,81,90,88,95
分組整理,描述數(shù)據(jù)
分組 | 七年級(jí) | 八年級(jí) | ||
畫(huà)“正”計(jì)數(shù) | 頻數(shù) | 畫(huà)“正”計(jì)數(shù) | 頻數(shù) | |
一 | 1 | 2 | ||
一 | 1 | 一 | 1 | |
2 | ||||
正正 | 10 | |||
4 | 正 | 5 |
七、八年級(jí)抽取學(xué)生的測(cè)試成績(jī)統(tǒng)計(jì)表
年級(jí) | 平均數(shù) | 中位數(shù) | 眾數(shù) | 優(yōu)秀率 |
七年級(jí) | 82 | 81 | 20% | |
八年級(jí) | 82.5 | 86.5 | 25% |
根據(jù)以上信息,回答下列問(wèn)題:
(1)表中__________,__________,__________,
(2)若該校七年級(jí)270人和八年級(jí)280人參加了此次測(cè)試,估計(jì)參加此次測(cè)試成績(jī)優(yōu)秀的學(xué)生人數(shù);
(3)根據(jù)以上數(shù)據(jù),你認(rèn)為該校七、八年級(jí)哪個(gè)年級(jí)學(xué)生掌握交通安全知識(shí)較好?并說(shuō)明理由?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線(xiàn)y=﹣x2+mx+n交x軸于點(diǎn)A(﹣2,0)和點(diǎn)B,交y軸于點(diǎn)C(0,2).
(1)求拋物線(xiàn)的函數(shù)表達(dá)式;
(2)若點(diǎn)M在拋物線(xiàn)上,且S△AOM=2S△BOC,求點(diǎn)M的坐標(biāo);
(3)如圖2,設(shè)點(diǎn)N是線(xiàn)段AC上的一動(dòng)點(diǎn),作DN⊥x軸,交拋物線(xiàn)于點(diǎn)D,求線(xiàn)段DN長(zhǎng)度的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為加快5G網(wǎng)絡(luò)建設(shè),某移動(dòng)通信公司在一個(gè)坡度為2:1的山腰上建了一座5G信號(hào)通信塔AB,在距山腳C處水平距離39米的點(diǎn)D處測(cè)得通信塔底B處的仰角是35°,測(cè)得通信塔頂A處的仰角是49°,(參考數(shù)據(jù):sin35°≈0.57,tan35°≈0.70,sin49°≈0.75,tan49°≈1.15),則通信塔AB的高度約為( )
A.27米B.31米C.48米D.52米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=10,BC=6,線(xiàn)段AC的垂直平分線(xiàn)MN分別交AC、AB于M、N兩點(diǎn),則△BCN的面積是( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知∠MON=120°,點(diǎn)A,B分別在ON,OM邊上,且OA=OB,點(diǎn)C在線(xiàn)段OB上(不與點(diǎn)O,B重合),連接CA.將射線(xiàn)CA繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)120°得到射線(xiàn)CA′,將射線(xiàn)BO繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)150°與射線(xiàn)CA′交于點(diǎn)D.
(1)根據(jù)題意補(bǔ)全圖1;
(2)求證:
①∠OAC=∠DCB;
②CD=CA(提示:可以在OA上截取OE=OC,連接CE);
(3)點(diǎn)H在線(xiàn)段AO的延長(zhǎng)線(xiàn)上,當(dāng)線(xiàn)段OH,OC,OA滿(mǎn)足什么等量關(guān)系時(shí),對(duì)于任意的點(diǎn)C都有∠DCH=2∠DAH,寫(xiě)出你的猜想并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的一元二次方程x2-(k+2)x+k-1=0
(1)若方程的一個(gè)根為 -1,求的值和方程的另一個(gè)根;
(2)求證:不論取何值,該方程都有兩個(gè)不相等的實(shí)數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在平面直角坐標(biāo)系中,拋物線(xiàn)y=ax2﹣2ax+4(a<0)交x軸于點(diǎn)A、B,與y軸交于點(diǎn)C,AB=6.
(1)如圖1,求拋物線(xiàn)的解析式;
(2)如圖2,點(diǎn)R為第一象限的拋物線(xiàn)上一點(diǎn),分別連接RB、RC,設(shè)△RBC的面積為s,點(diǎn)R的橫坐標(biāo)為t,求s與t的函數(shù)關(guān)系式;
(3)在(2)的條件下,如圖3,點(diǎn)D在x軸的負(fù)半軸上,點(diǎn)F在y軸的正半軸上,點(diǎn)E為OB上一點(diǎn),點(diǎn)P為第一象限內(nèi)一點(diǎn),連接PD、EF,PD交OC于點(diǎn)G,DG=EF,PD⊥EF,連接PE,∠PEF=2∠PDE,連接PB、PC,過(guò)點(diǎn)R作RT⊥OB于點(diǎn)T,交PC于點(diǎn)S,若點(diǎn)P在BT的垂直平分線(xiàn)上,OB﹣TS=,求點(diǎn)R的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com