【題目】如圖,在正方形網(wǎng)格圖中建立一直角坐標(biāo)系,一條圓弧經(jīng)過網(wǎng)格點(diǎn)A、B、C,請?jiān)诰W(wǎng)格中進(jìn)行下列操作:
(1)在圖中確定該圓弧所在圓的圓心D點(diǎn)的位置,并寫出點(diǎn)D點(diǎn)坐標(biāo)為________.
(2)連接AD、CD,求⊙D的半徑及的長;
(3)有一點(diǎn)E(6,0),判斷點(diǎn)E與⊙D的位置關(guān)系.
【答案】(1)(2,0);(2)π;(3)點(diǎn)E在⊙D內(nèi)部.
【解析】
(1)找到AB,BC的垂直平分線的交點(diǎn)即為圓心坐標(biāo);
(2)利用勾股定理可求得圓的半徑;易得△AOD≌△DEC,那么∠OAD=∠CDE,即可得到圓心角的度數(shù)為90°,根據(jù)弧長公式可得;
(3)求出DE的長與半徑比較可得.
(1)如圖,D點(diǎn)坐標(biāo)為(2,0),
故答案為:(2,0);
(2)AD=;
作CE⊥x軸,垂足為E.
∵△AOD≌△DEC,
∴∠OAD=∠CDE,
又∵∠OAD+∠ADO=90°,
∴∠CDE+∠ADO=90°,
∴扇形DAC的圓心角為90度,
∴的長為=π;
(3)點(diǎn)E到圓心D的距離為,
∴點(diǎn)E在⊙D內(nèi)部.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明的爸爸和媽媽上山游玩,爸爸步行,媽媽乘坐纜車,相約在山頂纜車的終點(diǎn)會合.已知爸爸步行的路程是纜車所經(jīng)線路長的2.5倍,媽媽在爸爸出發(fā)后50分鐘才坐上纜車,纜車的平均速度為每分鐘180米.圖中的折現(xiàn)反映了爸爸行走的路程(米)與時(shí)間(分鐘)之間的函數(shù)關(guān)系.
(1)爸爸行走的總路程是 米,他途中休息了 分鐘;
(2)當(dāng)時(shí),與之間的函數(shù)關(guān)系式是 ;
(3)爸爸休息之后行走的速度是每分鐘 米;
(4)當(dāng)媽媽到達(dá)纜車終點(diǎn)是,爸爸離纜車終點(diǎn)的路程是 米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實(shí)踐四邊形旋轉(zhuǎn)中的數(shù)學(xué)
“智慧”數(shù)學(xué)小組在課外數(shù)學(xué)活動中研究了一個(gè)問題,請幫他們解答.
任務(wù)一:如圖1,在矩形ABCD中,,,E,F分別為AB,AD邊的中點(diǎn),四邊形AEGF為矩形,連接CG.
請直接寫出CG的長是______.
如圖2,當(dāng)矩形AEGF繞點(diǎn)A旋轉(zhuǎn)比如順時(shí)針旋轉(zhuǎn)至點(diǎn)G落在邊AB上時(shí),請計(jì)算DF與CG的長,通過計(jì)算,試猜想DF與CG之間的數(shù)量關(guān)系.
當(dāng)矩形AEGF繞點(diǎn)A旋轉(zhuǎn)至如圖3的位置時(shí),中DF與CG之間的數(shù)量關(guān)系是否還成立?請說明理由.
任務(wù)二:“智慧”數(shù)學(xué)小組對圖形的旋轉(zhuǎn)進(jìn)行了拓展研究,如圖4,在ABCD中,,,,E,F分別為AB,AD邊的中點(diǎn),四邊形AEGF為平行四邊形,連接“智慧”數(shù)學(xué)小組發(fā)現(xiàn)DF與CG仍然存在著特定的數(shù)量關(guān)系.
如圖5,當(dāng)AEGF繞點(diǎn)A旋轉(zhuǎn)比如順時(shí)針旋轉(zhuǎn),其他條件不變時(shí),“智慧”數(shù)學(xué)小組發(fā)現(xiàn)DF與CG仍然存在著這一特定的數(shù)量關(guān)系請你直接寫出這個(gè)特定的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C(0,).
(1)_____,點(diǎn)A的坐標(biāo)為______,點(diǎn)B的坐標(biāo)為_____;
(2)設(shè)拋物線的頂點(diǎn)為M,求四邊形ABMC的面積;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次籃球比賽中,如圖隊(duì)員甲正在投籃.已知球出手時(shí)離地面m,與籃圈中心的水平距離為7 m,球出手后水平距離為4 m時(shí)達(dá)到最大高度4 m,設(shè)籃球運(yùn)行軌跡為拋物線,籃圈距地面3 m.
(1)建立如圖所示的平面直角坐標(biāo)系,問此球能否準(zhǔn)確投中?
(2)此時(shí),對方隊(duì)員乙在甲面前1 m處跳起蓋帽攔截,已知乙的最大摸高為3.1 m,那么他能否獲得成功?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:∠MAN=60°,點(diǎn)B在射線AM上,AB=4(如圖).P為直線AN上一動點(diǎn),以BP為邊作等邊三角形BPQ(點(diǎn)B,P,Q按順時(shí)針排列),O是△BPQ的外心.
(1)當(dāng)點(diǎn)P在射線AN上運(yùn)動時(shí),求證:點(diǎn)O在∠MAN的平分線上;
(2)當(dāng)點(diǎn)P在射線AN上運(yùn)動(點(diǎn)P與點(diǎn)A不重合)時(shí),AO與BP交于點(diǎn)C,設(shè)AP=x,AC﹒AO=y,求y關(guān)于x的函數(shù)解析式,并寫出自變量的取值范圍;
(3)若點(diǎn)D在射線AN上,AD=2,圓I為△ABD的內(nèi)切圓.當(dāng)△BPQ的邊BP或BQ與圓I相切時(shí),請直接寫出點(diǎn)A與點(diǎn)O的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,假分?jǐn)?shù)可以化為整數(shù)與真分?jǐn)?shù)的和的形式.例如:.在分式中,對于只含有一個(gè)字母的分式,當(dāng)分子的次數(shù)大于或等于分母的次數(shù)時(shí),我們稱之為“假分式”;當(dāng)分子的次數(shù)小于分母的次數(shù)時(shí),我們稱之為“真分式”.例如:像,,…這樣的分式是假分式;像 ,,…這樣的分式是真分式.類似的,假分式也可以化為整式與真分式的和的形式. 例如: ’
.
(1)將分式化為整式與真分式的和的形式;
(2)如果分式的值為整數(shù),求x的整數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)絡(luò)中,△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)A、B、C的坐標(biāo)分別為(-2,4)、(-2,0)、(-4,1),結(jié)合所給的平面直角坐標(biāo)系解答下列問題:
(1)畫出△ABC關(guān)于原點(diǎn)O對稱的△A1B1C1.
(2)平移△ABC,使點(diǎn)A移動到點(diǎn)A2(0,2),畫出平移后的△A2B2C2并寫出點(diǎn)B2、C2的坐標(biāo).
(3)在△ABC、△A1B1C1、△A2B2C2中,△A2B2C2與 成中心對稱,其對稱中心的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,海中有一小島P,在距小島P的海里范圍內(nèi)有暗礁,一輪船自西向東航行,它在A處時(shí)測得小島P位于北偏東60°,且A、P之間的距離為32海里,若輪船繼續(xù)向正東方向航行,輪船有無觸礁危險(xiǎn)?請通過計(jì)算加以說明.如果有危險(xiǎn),輪船自A處開始至少沿東偏南多少度方向航行,才能安全通過這一海域?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com