【題目】如圖1,點(diǎn)和矩形的邊都在直線,以點(diǎn)為圓心,24為半徑作半圓,分別交直線兩點(diǎn).已知: ,,矩形自右向左在直線上平移,當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí),矩形停止運(yùn)動(dòng).在平移過程中,設(shè)矩形對角線與半圓的交點(diǎn)為 (點(diǎn)為半圓上遠(yuǎn)離點(diǎn)的交點(diǎn)).

1)如圖2,若與半圓相切,求的值;

2)如圖3,當(dāng)與半圓有兩個(gè)交點(diǎn)時(shí),求線段的取值范圍;

3)若線段的長為20,直接寫出此時(shí)的值.

【答案】1;(2;(3

【解析】

1)如圖2,連接OP,則DF與半圓相切,利用OPD≌△FCDAAS),可得:OD=DF=30;

2)利用,求出,則DF與半圓相切,由(1)知:PD=CD=18,即可求解;

3)設(shè)PG=GH=m,則:,求出,利用,即可求解.

1)如圖,連接

與半圓相切,∴,∴,

在矩形中,,

,根據(jù)勾股定理,得

中,

2)如圖,

當(dāng)點(diǎn)與點(diǎn)重合時(shí),

過點(diǎn)與點(diǎn),則

,由(1)知:

,∴

當(dāng)與半圓相切時(shí),由(1)知:,

3)設(shè)半圓與矩形對角線交于點(diǎn)P、H,過點(diǎn)OOGDF,

PG=GH,

,則,

設(shè):PG=GH=m,則:,

整理得:25m2-640m+1216=0,

解得:,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線過點(diǎn),,與y軸交于點(diǎn)C,連接ACBC,將沿BC所在的直線翻折,得到,連接OD

1)用含a的代數(shù)式表示點(diǎn)C的坐標(biāo).

2)如圖1,若點(diǎn)D落在拋物線的對稱軸上,且在x軸上方,求拋物線的解析式.

3)設(shè)的面積為S1,的面積為S2,若,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩個(gè)工程隊(duì)同時(shí)開始維修某一段路面,一段時(shí)間后,甲隊(duì)被調(diào)往別處,乙隊(duì)獨(dú)自完成了剩余的維修任務(wù).已知乙隊(duì)每小時(shí)維修路面的長度保持不變,甲隊(duì)每小時(shí)維修路面30米.甲、乙兩隊(duì)在此路段維修路面的總長度(米)與維修時(shí)間(時(shí))之間的函數(shù)圖象如圖所示,下列說法中:

1)甲隊(duì)調(diào)離時(shí),甲、乙兩隊(duì)已維修路面的總長度為150米;

2)乙隊(duì)每小時(shí)比甲隊(duì)多維修20米;

3)乙一共工作2小時(shí);

4

正確的有( 。﹤(gè).

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線x軸交于AD兩點(diǎn),與y軸交于點(diǎn)B,四邊形OBCD是矩形,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)B的坐標(biāo)為(04),已知點(diǎn)Em0)是線段DO上的動(dòng)點(diǎn),過點(diǎn)EPE⊥x軸交拋物線于點(diǎn)P,交BC于點(diǎn)G,交BD于點(diǎn)H

1)求該拋物線的解析式;

2)當(dāng)點(diǎn)P在直線BC上方時(shí),請用含m的代數(shù)式表示PG的長度;

3)在(2)的條件下,是否存在這樣的點(diǎn)P,使得以P、B、G為頂點(diǎn)的三角形與△DEH相似?若存在,求出此時(shí)m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形和正六邊形邊長均為1,如圖所示,把正方形放置在正六邊形外,使邊與邊重合,按下列步驟操作:將正方形在正六邊形外繞點(diǎn)逆時(shí)針旋轉(zhuǎn),使邊與邊重合,完成第一次旋轉(zhuǎn);再繞點(diǎn)逆時(shí)針旋轉(zhuǎn),使邊與邊重合,完成第二次旋轉(zhuǎn);此時(shí)點(diǎn)經(jīng)過路徑的長為___________.若按此方式旋轉(zhuǎn),共完成六次,在這個(gè)過程中點(diǎn),之間距離的最大值是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果店3月份購進(jìn)甲種水果50千克、乙種水果80千克,共花費(fèi)1700元,其中甲種水果以15/千克,乙種水果以20/千克全部售出;4月份又以同樣的價(jià)格購進(jìn)甲種水果60千克、乙種水果40千克,共花費(fèi)1200元,由于市場不景氣,4月份兩種水果均以3月份售價(jià)的8折全部售出.

1)求甲、乙兩種水果的進(jìn)價(jià)每千克分別是多少元?

2)請計(jì)算該水果店3月和4月甲、乙兩種水果總贏利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中華人民共和國《城市道路路內(nèi)停車泊位設(shè)置規(guī)范》規(guī)定:

一、在城市道路范圍內(nèi),在不影響行人、車輛通行的情況下,政府有關(guān)部門可以規(guī)劃停車泊位.停車泊位的排列方式有三種,如圖所示:

二、雙向通行道路,路幅寬米以上的,可在兩側(cè)設(shè)停車泊位,路幅寬米到米的,可在單側(cè)設(shè)停車泊位,路幅寬米以下的,不能設(shè)停車泊位;

三、規(guī)定小型停車泊位,車位長米,車位寬米;

四、設(shè)置城市道路路內(nèi)機(jī)動(dòng)車停車泊位后,用于單向通行的道路寬度應(yīng)不小于.

根據(jù)上述的規(guī)定,在不考慮車位間隔線和車道間隔線的寬度的情況下,如果在一條路幅寬為米的雙向通行車道設(shè)置同一種排列方式的小型停車泊位,請回答下列問題:

1)可在該道路兩側(cè)設(shè)置停車泊位的排列方式為 ;

2)如果這段道路長米,那么在道路兩側(cè)最多可以設(shè)置停車泊位 個(gè).

(參考數(shù)據(jù):,)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知ABC的三個(gè)頂點(diǎn)坐標(biāo)分別是A(1,1),B(4,1),C(3,3).

(1)將ABC向下平移5個(gè)單位后得到A1B1C1,請畫出A1B1C1;

(2)將ABC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到A2B2C2,請畫出A2B2C2;

(3)判斷以O,A1,B為頂點(diǎn)的三角形的形狀.(無須說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的解析式為,則下列說法中錯(cuò)誤的是(

A.確定拋物線的開口方向與大小

B.若將拋物線沿軸平移,則的值不變

C.若將拋物線沿軸平移,則的值不變

D.若將拋物線沿直線平移,則、、的值全變

查看答案和解析>>

同步練習(xí)冊答案