【題目】某超市銷售一種牛奶,進(jìn)價(jià)為每箱24元,規(guī)定售價(jià)不低于進(jìn)價(jià).現(xiàn)在的售價(jià)為每箱36元,每月可銷售60箱.市場(chǎng)調(diào)查發(fā)現(xiàn):若這種牛奶的售價(jià)每降價(jià)1元,則每月的銷量將增加10箱,設(shè)每箱牛奶降價(jià)x元(x為正整數(shù)),每月的銷量為y箱.
(1)寫出y與x中間的函數(shù)關(guān)系式和自變量的取值范圍;
(2)超市如何定價(jià),才能使每月銷售牛奶的利潤(rùn)最大?最大利潤(rùn)是多少元?
【答案】(1)y=60+10x,x為x≤12的正整數(shù).
(2)當(dāng)超市降價(jià)3元時(shí),即每箱33元時(shí),所獲利潤(rùn)最大,最大利潤(rùn)為810元.
【解析】試題分析:(1)根據(jù)價(jià)格每降低1元,平均每天多銷售10箱,由每箱降價(jià)x元,多賣10x,據(jù)此可以列出函數(shù)關(guān)系式;(2)由利潤(rùn)=(售價(jià)﹣成本)×銷售量列出函數(shù)關(guān)系式,求出最大值.
試題解析:(1)根據(jù)題意,得:y=60+10x,由36﹣x≥24得x≤12,
∴1≤x≤12,且x為整數(shù);
(2)設(shè)所獲利潤(rùn)為W,
則W=(36﹣x﹣24)(10x+60)=﹣10x2+60x+720=﹣10(x﹣3)2+810,
∴當(dāng)x=3時(shí),W取得最大值,最大值為810,
答:超市定價(jià)為33元時(shí),才能使每月銷售牛奶的利潤(rùn)最大,最大利潤(rùn)是810元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小張準(zhǔn)備把一根長(zhǎng)為32cm的鐵絲剪成兩段,并把每一段各圍成一個(gè)正方形.(1)要使這兩個(gè)正方形的面積之和等于40cm2,小張?jiān)撛趺醇簦?/span>
(2)小李對(duì)小張說(shuō):“這兩個(gè)正方形的面積之和不可能等于30cm2.”他的說(shuō)法對(duì)嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)習(xí)小組發(fā)現(xiàn)一個(gè)結(jié)論:已知直線a∥b,若直線c∥a,則c∥b.他們發(fā)現(xiàn)這個(gè)結(jié)論運(yùn)用很廣,請(qǐng)你利用這個(gè)結(jié)論解決以下問(wèn)題:
已知直線AB∥CD,點(diǎn)E在AB、CD之間,點(diǎn)P、Q分別在直線AB、CD上,連接PE、EQ.
(1)如圖1,運(yùn)用上述結(jié)論,探究∠PEQ與∠APE+∠CQE之間的數(shù)量關(guān)系,并說(shuō)明理由;
(2)如圖2,PF平分∠BPE,QF平分∠EQD,當(dāng)∠PEQ=140°時(shí),求出∠PFQ的度數(shù);
(3)如圖3,若點(diǎn)E在CD的下方,PF平分∠BPE,QH平分∠EQD,QH的反向延長(zhǎng)線交PF于點(diǎn)F.當(dāng)∠PEQ=70°時(shí),請(qǐng)求出∠PFQ的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O直徑AB和弦CD相交于點(diǎn)E,AE=2,EB=6,∠DEB=30°,求弦CD長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,對(duì)角線交于點(diǎn),,分別是,的中點(diǎn).下列結(jié)論正確的是( )
①;②;③平分;④平分;⑤四邊形是菱形.
A.③⑤B.①②④C.①②③④D.①②③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在崇仁一中中學(xué)生籃球賽中,小方共打了10場(chǎng)球.他在第6,7,8,9場(chǎng)比賽中分別得了22,15,12和19分,他的前9場(chǎng)比賽的平均得分y比前5場(chǎng)比賽的平均得分x要高 .如果他所參加的10場(chǎng)比賽的平均得分超過(guò)18分
(1)用含x的代數(shù)式表示y;
(2)小方在前5場(chǎng)比賽中,總分可達(dá)到的最大值是多少?
(3)小方在第10場(chǎng)比賽中,得分可達(dá)到的最小值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料:
在數(shù)學(xué)課上,老師提出如下問(wèn)題:
已知:如圖,△ABC及AC邊的中點(diǎn)O。
求作:平行四邊形ABCD。
小敏的作法如下:
①連接BO并延長(zhǎng),在延長(zhǎng)線上截取OD=BO;
②連接DA,DC.
所以四邊形ABCD就是所求作的平行四邊形.
老師說(shuō):“小敏的作法正確.”
請(qǐng)回答:小敏的作法正確的理由是_________________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,有一矩形,長(zhǎng),寬軸,軸.點(diǎn)坐標(biāo)為,該矩形邊上有一動(dòng)點(diǎn),沿運(yùn)動(dòng)一周,則點(diǎn)的縱坐標(biāo)與點(diǎn)走過(guò)的路程之間的函數(shù)關(guān)系用圖象表示大致是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】含60°角的菱形A1B1C1B2,A2B2C2B3,A3B3C3B4,…,按如圖的方式放置在平面直角坐標(biāo)系xOy中,點(diǎn)A1,A2,A3,…,和點(diǎn)B1,B2,B3,B4,…,分別在直線y=kx和x軸上.已知B1(2,0),B2(4,0),則點(diǎn)A1的坐標(biāo)是_____;點(diǎn)A3的坐標(biāo)是_____;點(diǎn)An的坐標(biāo)是____(n為正整數(shù)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com