【題目】如圖,在△ABC中,AB=AC,D為BC中點,四邊形ABDE是平行四邊形,AC、DE相交于點O.
(1)求證:四邊形ADCE是矩形.
(2)若∠AOE=60°,AE=4,求矩形ADCE對角線的長.

【答案】
(1)證明:∵四邊形ABDE是平行四邊形,

∴AB=DE,

又∵AB=AC,

∴DE=AC.

∵AB=AC,D為BC中點,

∴∠ADC=90°,

又∵D為BC中點,

∴CD=BD.

∴CD∥AE,CD=AE.

∴四邊形AECD是平行四邊形,

又∴∠ADC=90°,

∴四邊形ADCE是矩形.


(2)解:∵四邊形ADCE是矩形,

∴AO=EO,

∴△AOE為等邊三角形,

∴AO=4,

故AC=8.


【解析】(1)根據(jù)四邊形ABDE是平行四邊形和AB=AC,推出AD和DE相等且互相平分,即可推出四邊形ADCE是矩形.(2)根據(jù)∠AOE=60°和矩形的對角線相等且互相平分,得出△AOE為等邊三角形,即可求出AO的長,從而得到矩形ADCE對角線的長.
【考點精析】利用等腰三角形的性質(zhì)和平行四邊形的性質(zhì)對題目進(jìn)行判斷即可得到答案,需要熟知等腰三角形的兩個底角相等(簡稱:等邊對等角);平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補(bǔ);平行四邊形的對角線互相平分.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,現(xiàn)將一塊等腰直角三角板ABC放在第一象限,斜靠在兩條坐標(biāo)軸上,且點A(0,2),點C(1,0),BE⊥x軸于點E,一次函數(shù)y=x+b經(jīng)過點B,交y軸于點D.

(1)求證:△AOC≌△CEB;
(2)求△ABD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,用直尺和圓規(guī)作∠BAD的平分線AG交BC于點E.若BF=6,AB=5,則AE的長為( 。
A.4
B.6
C.8
D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某西瓜產(chǎn)地組織40輛汽車裝運完A,B,C三種西瓜共200噸到外地銷售.按計劃,40輛汽車都要裝運,每輛汽車只能裝運同一種西瓜,且必須裝滿.根據(jù)下表提供的信息,解答以下問題:

西瓜種類

A

B

C

每輛汽車運載量(噸)

4

5

6

每噸西瓜獲利(百元)

16

10

12


(1)設(shè)裝運A種西瓜的車輛數(shù)為x輛,裝運B種西瓜的車輛數(shù)為y輛,求y與x的函數(shù)關(guān)系式;
(2)如果裝運每種西瓜的車輛數(shù)都不少于10輛,那么車輛的安排方案有幾種?并寫出每種安排方案;
(3)若要是此次銷售獲利達(dá)到預(yù)期利潤25萬元,應(yīng)采取怎樣的車輛安排方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=6cm,AC=8cm,BC=10cm,M是BC邊上的動點,MD⊥AB,ME⊥AC,垂足分別是D、E,線段DE的最小值是cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AN是M的直徑,NBx軸,AB交M于點C.

(1)若點A(0,6),N(0,2),ABN=30°,求點B的坐標(biāo);

(2)若D為線段NB的中點,求證:直線CD是M的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以下問題,不適合普查的是( )

A.學(xué)校招聘教師,對應(yīng)聘人員的面試

B.進(jìn)入地鐵站對旅客攜帶的包進(jìn)行的安檢

C.調(diào)查本班同學(xué)的身高

D.調(diào)查我國民眾對“香港近期暴力”行為的看法

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三位運動員在相同條件下各射靶10次,每次射靶的成績?nèi)缦拢?/span>

甲:9,10,8,5,7,8,10,8,8,7;

乙:5,7,8,7,8,9,7,9,10,10;

丙:7,6,8,5,4,7,6,3,9,5.

(1)根據(jù)以上數(shù)據(jù)完成下表:

平均數(shù)

中位數(shù)

方差

8

8

8

8

2.2

6

3

(2)依據(jù)表中數(shù)據(jù)分析,哪位運動員的成績最穩(wěn)定,并簡要說明理由

(3)比賽時三人依次出場,順序由抽簽方式?jīng)Q定.求甲、乙相鄰出場的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計算正確的是( 。

A.a2+a2a4B.a23a5C.2a2a22D.a5a2a7

查看答案和解析>>

同步練習(xí)冊答案